Concavity of output relative entropy for channels with binary inputs

Qinghua (Devon) Ding
Dept. of Computer Science and Engg.
The Chinese University of Hong Kong
Sha Tin, N.T., Hong Kong
Email: qhding@cse.cuhk.edu.hk

Chin Wa (Ken) Lau, Chandra Nair and Yan Nan Wang
Dept. of Information Engg.
The Chinese University of Hong Kong
Sha Tin, N.T., Hong Kong
Email: {kenlau,chandra,dustin}@ie.cuhk.edu.hk

Abstract—We generalize a convexity result due to Wyner and Ziv to channels with binary inputs and arbitrary outputs. This results in a convex reformulation of some non-convex optimization problems that arise naturally in multi-user information theory.

I. INTRODUCTION

The optimality of certain achievable rate regions for communication settings in multiuser information theory, such as the Marton’s region for the two-receiver broadcast channel, can be verified by establishing that product distributions are the global maximizers of a corresponding non-convex functional on product spaces, [1]. A functional satisfying the above property is said to satisfy global tensorization. As stated in [2], a curious connection has been repeatedly observed between functionals that satisfy global tensorization and those that satisfy a so-called local tensorization property. One way to reconcile this apparent relationship is to determine if all the local maximizers of non-convex functionals that satisfy global tensorization are also product distributions.

On a related note, information inequalities concerning non-convex functionals have also been established [3] by determining all the local maximizers. Additionally, certain non-convex functionals, such as the one arising in the capacity region computation of the vector Gaussian channel [4] is shown to have a unique local maximum. Inspired by these observations, we seek to understand the geometric structure of certain information functionals and determine its set of local extremizers.

The family considered in this paper can be considered as an elementary but non-trivial sub-class of functionals. The results in this paper extend the celebrated convexity result, sometimes referred to as Mrs. Gerber’s lemma, of Wyner and Ziv to a broader family of channels.

Given a conditional distribution $W_{Y|X}$, a reference distribution P_X, and a non-negative parameter λ we will be investigating non-convex optimization problems of the form

$$\min_{\Phi_X} \{ \lambda D(\Phi_X || P_X) - D((W\Phi)_Y || (WP)_Y) \}, \quad (1)$$

and see if these problems can be reparameterized into convex optimization problems. In the above expression $D(\Phi_X || P_X)$ denotes the relative entropy, and the logarithms are assumed to be with respect to base e. If such a reparameterization exists, then any local minimizer would also be a global minimizer (similar to the observation in the MIMO Gaussian broadcast channel). The main idea is to choose a parameterization of Φ_X so that $D(\Phi_X || P_X)$ is linear in the parameter and determine whether the output relative entropy, $D((W\Phi)_Y || (WP)_Y)$, is concave. This approach is motivated by geodesically convex reformulations of the Brascamp-Lieb constants in [5].

A. Motivation

Consider the following optimization scenarios originating in multiuser information theory.

(i) In the Ahlswede-Korner source coding problem [6], to compute the minimal weighted sum-rate, one is faced with the following optimization problem: Given a conditional distribution $W_{Y|X}$ and an input distribution Φ_X, one seeks to compute the value of the following optimization problem (parameterized by λ, $\lambda \geq 0$):

$$\min_{U: U \rightarrow X \rightarrow Y} H(Y|U) + \lambda I(U; X).$$

(ii) In the degraded broadcast channel, to compute the maximum weighted sum-rate $R_Z + \lambda R_Y$, one seeks to compute the value of the following optimization problem (parameterized by λ, $0 \leq \lambda \leq 1$):

$$\max_{U, X: U \rightarrow X \rightarrow Y \rightarrow Z} I(U; Z) + \lambda I(X; Y|U).$$

Both of these problems result in the computation of the lower convex envelope with respect to Φ_X for the functionals $H(Y) - \lambda H(X)$ and $H(Z) - \lambda H(Y)$, respectively. Observe that in the latter case, the channel $W_{Z|Y}$ is fixed, and in the former case the conditional distribution $W_{Y|X}$ is fixed. Note that, when $\lambda = 0$ both functionals are concave in Φ_X and when $\lambda = 1$ both functionals are convex in Φ_X. For $\lambda \in (0, 1)$ (the interesting regime), the function is not necessarily convex or concave. Therefore the computation of the lower convex envelope does not reduce to a convex optimization problem and a priori the functionals may have multiple local minimizers. Hence it is natural to ask if there is a subset of the above family of problems for which under a suitable reparameterization, the problem reduces to a convex optimization problem.
Characterization of the lower convex envelope can be done via Fenchel duality by computing its supporting hyperplanes. To this end we seek to compute the minimum of

\[G(P_X) := \min_{\Phi_X} \{ \lambda D(\Phi_X \| P_X) - D(\langle W \Phi \rangle_Y \| \langle WP \rangle_Y) \} \]

\[= \min_{\Phi_X} \left\{ H_\Phi(Y) - \lambda H_\Phi(X) - \sum_x a_x \Phi_X(x) \right\}, \]

where \((W \Phi)_Y\) denotes the distribution on \(Y\) induced by the input distribution \(\Phi_X\) and the channel \(W_{Y \mid X}\), \(H_\Phi(X)\) denotes the Shannon entropy of \(X\) when \(X \sim \Phi_X\), and \(a_x = \sum_y W(y|x) \ln \frac{(W P)_y}{P(x)}\). Thus \(G(P_X)\) denotes the Fenchel dual for the convex envelope of \(H(Y) - \lambda H(X)\), with \(a_x = \sum_y W(y|x) \ln \frac{(W P)_y}{P(x)}\) being the dual variables. This is one way in which optimization problems of the type described in (1) arise in multiuser information theory.

Another motivation for such optimization problems lies in determining the optimal constants for Strong-Data-Processing inequality parameters [7]. It has been shown in [8] that given \(P_X, W_{Y \mid X}\), the inequality

\[I(U; Y) - \eta I(U; X) \leq 0, \]

holds for all \(U: U \to X \to Y\) is Markov, if and only if, the inequality

\[\min_{\Phi_X} \{ \eta D(\Phi_X \| P_X) - D(\langle W \Phi \rangle_Y \| \langle WP \rangle_Y) \} \geq 0 \]

holds. Note that the range of \(\eta\) depends on \(P_X\). One can also define a similar \(\eta\) that holds for all input distributions \(P_X\) (and thus depends only on the channel \(W_{Y \mid X}\)) to be

\[\eta_W := \min_{\Phi_X} \{ \eta : I(U; Y) - \eta I(U; X) \leq 0, \forall P_X : U \to X \to Y\} \]

or equivalently (see Exercise 15.12 in [9])

\[\eta_W := \min_{\Phi_X} \{ \eta : \lambda D(\Phi_X \| P_X) - D(\langle W \Phi \rangle_Y \| \langle WP \rangle_Y) \} \geq 0, \forall P_X, \Phi_X \} \]

It has recently been shown [10] that for any \(W_{Y \mid X}\) it suffices to consider \(P_X\) having support on two alphabets and \(\Phi_X \ll P_X\) to compute \(\eta_W\).

Remark 1. In light of this result, the case of \(X\) being binary takes particular significance while considering the family of optimization problems of the form

\[\min_{\Phi_X} \{ \lambda D(\Phi_X \| P_X) - D(\langle W \Phi \rangle_Y \| \langle WP \rangle_Y) \}, \]

\[\min_{P_X, \Phi_X} \{ \lambda D(\Phi_X \| P_X) - D(\langle W \Phi \rangle_Y \| \langle WP \rangle_Y) \}. \]

B. A convexity result due to Wyner and Ziv

While trying to compute the superposition coding region of a degraded binary-symmetric broadcast channel (see item (ii) in the Motivation), Wyner and Ziv showed that for any \(\alpha \in [0, \frac{1}{2}]\), the function \(H_2(\alpha + H_2^{-1}(u))\) is convex in \(u\), where \(H_2 : [0, \frac{1}{2}] \mapsto [0, \log 2]\) is binary entropy function given by \(H_2(x) = -x \ln x - (1 - x) \ln(1 - x)\) and \(H_2^{-1} : [0, \log 2] \mapsto [0, \frac{1}{2}]\) is its inverse. Here \(a \ast b = a(1 - b) + b(1 - a)\) denotes a two-point convolution.

We can interpret this result alternately as the following: Let \(W_{Y \mid X}\) be the binary symmetric channel with crossover probability \(a\). Let \(P_X\) be the uniform distribution and parameterize \(\Phi_{X,t} = (H_2^{-1}(t), 1 - H_2^{-1}(t))\). Now observe that under this parameterization, \(D(\Phi_{X,t} \| P_X) = \ln 2 - t\) is linear in \(t\), and \(D((\langle W \Phi \rangle_Y \| WP)\rangle_Y) = \ln 2 - H_2(\alpha + H_2^{-1}(t))\) is concave in \(t\). Therefore the function

\[\lambda D(\Phi_{X,t} \| P_X) - D((\langle W \Phi \rangle_Y \| WP)\rangle_Y) \]

is convex in \(t\), reducing the computation of (1) to a convex optimization problem. Note that \(\Phi_{X,t}\) determines a path along the binary simplex such that \(D(\Phi_{X,t} \| P_X)\) is linear in \(t\) and \(D((\langle W \Phi \rangle_Y \| WP)\rangle_Y)\) is concave in \(t\).

Thus the question we seek to address is: given any channel \(W_{Y \mid X}\), a reference distribution \(P_X\), and an initial distribution \(\Phi_X\), is it possible to parameterize the path from \(\Phi_X\) to \(P_X\) according to \(\Phi_{X,t}\), where \(\Phi_{X,0} = \Phi_X\) and \(\Phi_{X,1} = P_X\), with the property that \(D(\Phi_{X,t} \| P_X)\) is linear in \(t\) and \(D((\langle W \Phi \rangle_Y \| WP)\rangle_Y)\) is concave in \(t\). We will answer this question for channels with binary inputs and arbitrary output cardinalities. As stated in Remark 1, the case of binary inputs (and outputs of arbitrary cardinality) is particularly useful when computing \(\eta_W\) for channels with arbitrary input alphabets.

We first present our results for channels with binary outputs as we have slightly stronger results (see Proposition 1 in this setting. Our main results are presented in Theorem 1 and Theorem 2; these results generalize the convexity of \(H_2(\alpha + H_2^{-1}(u))\).

II. CHANNELS WITH BINARY INPUTS AND BINARY OUTPUTS

Let us denote a binary-input binary-output channel as

\[W_{Y \mid X} = \begin{bmatrix} a & b \\ \bar{a} & \bar{b} \end{bmatrix}. \]

Here the matrix entry \(W_{ij} = P(Y = i|X = j)\), \(\bar{a} = 1 - a, \bar{b} = 1 - b\). Let us denote \(\Phi_{X,t} = (\phi(t), 1 - \phi(t))\) and \(P_X = (p, 1 - p)\) to characterize the parameterized path and the reference distribution. Further we denote, for \(a, b \in [0, 1]\),

\[D_2(a \| b) := a \ln \frac{a}{b} + (1 - a) \ln \frac{1 - a}{1 - b} \]

to be the relative entropy between the two-point distributions characterized by \((a, 1 - a)\) and \((b, 1 - b)\) respectively. We also use \(\phi\) to represent \(1 - \phi\) for brevity. We also assume that the reference measure satisfies \(p > 0\); otherwise \(D_2(\phi|0) = \infty\) for all \(\phi \neq 0\).

Note that \(D_2(\phi(t)|p)\) is monotonically increasing (resp. decreasing) when \(\phi(t) \geq p\) (resp. \(\phi(t) \leq p\)). Hence if we enforce the linear dependence of input divergence on \(t\), we obtain

\[\frac{d^2}{dt^2} D_2(\phi|p) = \phi'' \ln \frac{\phi}{\phi_p} + \phi^2 \frac{d^2}{dt^2} \phi. \]
where \(\phi' = \frac{d\phi}{dt} \) and \(\phi'' = \frac{d^2\phi}{dt^2} \).

Imposing the boundary conditions \(\phi(0) = p \) and \(\phi(1) = 1 \) (resp. \(\phi(0) = 0 \) and \(\phi(1) = p \)), then \(\phi(t) \) can be uniquely determined (due to the monotonicity of \(D_2(\phi(t)\|p) \)). Concretely, for \(\phi(t) \geq p \), \(\phi(t) \) is the unique solution of

\[
D_2(\phi(t)\|p) = t \ln \frac{1}{p},
\]

and for \(\phi(t) \leq p \), \(\phi(t) \) is the unique solution of

\[
D_2(\phi(t)\|p) = (1-t) \ln \frac{1}{1-p}.
\]

Remark 2. Note that this reparameterization \(\phi(t) \) generalizes the parameterization \(H^{-1}_2(t) \) employed by Wyner and Ziv for the binary symmetric channel.

Let \((WP)_Y = (ap + b\bar{p}, ap + \bar{b}p)\) and \((W\Phi)_Y = (a\phi + b\bar{\phi}, a\phi + \bar{b}\bar{\phi})\). We define \(q = ap + b\bar{p} \) and \(\psi = a\phi + b\bar{\phi} \). Now we can calculate the second order derivative \(\frac{d^2}{dt^2} D_2(\psi\|q) \) as follows:

\[
\frac{d^2}{dt^2} D_2(\psi\|q) = \psi'' \ln \frac{\psi}{q} + \frac{\psi'^2}{\psi^2} \tag{6}
\]

\[
- (a-b)^2 \frac{\psi'' \ln \frac{\psi}{q} - (a-b) \psi' \ln \frac{\psi}{q}}{\psi^2}
\]

where \(\psi' = \frac{d\psi}{dt} \) and \(\psi'' = \frac{d^2\psi}{dt^2} \). Equality (a) follows from equation (5). Suppose \(\phi' \neq 0 \), then concavity of \(D((W\Phi_{X,t})_Y\| (WP)_Y) \) is equivalent to \(\frac{d^2}{dt^2} D_2(\psi\|q) \leq 0 \). This, in turn, is equivalent to

\[
f(\phi; p) = (a-b)^2 \frac{\phi \ln \frac{\phi}{p} - (a-b) \psi' \ln \frac{\psi}{q}}{\psi^2}\]
\[
\begin{cases}
\geq 0, \quad \phi \leq p; \\
\leq 0, \quad \phi \geq p;
\end{cases}
\]

since \(\ln \frac{\phi}{p} \leq 0 \) (resp. \(\geq 0 \)) when \(\phi \leq p \) (resp. \(\phi \geq p \)).

Remark that this condition (7) now does not depend on \(t \). One may calculate the derivatives of \(f(\phi; p) \) w.r.t. \(\phi \) as follows.

\[
\frac{d}{d\phi} f(\phi; p) = (a-b)^2 \left[(1-2\phi) \ln \frac{\phi}{p} - (1-2\phi) \ln \frac{\psi}{q} \right]
\]

\[
\frac{d^2}{d\phi^2} f(\phi; p) = (a-b)^2 \left[-2 \ln \frac{\phi}{p} + \ln \frac{\psi}{q} \right]
\]

\[
- (a-b)^2 \left[-2 \ln \frac{\psi}{q} - (1-2\phi) \right]
\]

\[
\frac{d^3}{d\phi^3} f(\phi; p) = - (a-b)^2 \left[-2 \frac{\psi' \ln \frac{\psi}{q} - (a-b) \psi' \ln \frac{\psi}{q}}{\psi^2} \right]
\tag{8}
\]

We will show that \(\frac{d^2}{d\phi^2} f(\phi; p) \) is decreasing w.r.t. \(\phi \) in the following lemma.

Lemma 1. The second-order derivative \(\frac{d^2}{d\phi^2} f(\phi; p) \) is monotonically decreasing in \(\phi \in [0, 1] \).

Proof. Sufficient to show \(\frac{d^2}{d\phi^2} f(\phi; p) \leq 0 \), which is equivalent to

\[
\psi'' \psi + (a-b) \phi \psi' \leq 0 \Rightarrow \psi'' \psi + (a-b) \phi \psi' + (a-b) \phi \bar{\phi} \psi' \geq 0.
\]

When \(0 \leq a, b \leq 1 \), we have

\[
\psi + (a-b) \phi \bar{\phi} \psi - (a-b) \phi \bar{\phi} \psi' \geq 0.
\]

Similarly, we have

\[
\psi + (a-b) \phi \bar{\phi} \psi = a\bar{\phi} \psi + b\bar{\phi} \psi \geq 0.
\]

This proves the required inequality. \(\square \)

Theorem 1. Consider a binary channel represented as Equation (4), with \(a \neq b \) and \(a, b \in (0, 1) \). Assume that the input distribution \(P_\chi \) is reparameterized according to Equation (5), then the output relative entropy \(D((W\Phi_{X,t})_Y\| (WP)_Y) \) is concave w.r.t. \(t \) under such a reparameterization, if and only if \(p \) is equal to

\[
p^* := \sqrt{\frac{bb}{a}}.
\]

Proof. We will first show that \(p = p^* \) is necessary. Calculate the Taylor expansion of \(f(\phi; p) \) at \(\phi = p \), and observe that \(f(p; p) = 0 \) and \(\frac{d^2}{d\phi^2} f(\phi; p) \big|_{\phi=p} = 0 \), we have \(f(p; p') = \frac{c^2}{2} \frac{d^2}{d\phi^2} f(\phi; p) \big|_{\phi=p} + O(\epsilon^3) \). Hence to satisfy the condition in (7), i.e. for

\[
f(\phi; p) \begin{cases}
\geq 0, \quad \phi \leq p; \\
\leq 0, \quad \phi \geq p;
\end{cases}
\]

we must have \(\frac{d^2}{d\phi^2} f(\phi; p) \big|_{\phi=p} = 0 \). By Equation (8), this is equivalent to

\[
(a-b) \ln \frac{\psi}{q} - \frac{1-2\phi}{p} = 0.
\]

One can solve above equation explicitly and the only feasible solution is \(p = p^* \). Hence \(p = p^* \) is necessary.

To show that it is sufficient, assume \(p = p^* \). From Lemma 1, we have that \(\frac{d^2}{d\phi^2} f(\phi; p^*) \) is decreasing w.r.t. \(\phi \). Since \(\frac{d^2}{d\phi^2} f(\phi; p^*) \big|_{\phi=p^*} = 0 \), then \(\frac{d^2}{d\phi^2} f(\phi; p^*) \leq 0 \) for \(\phi \geq p^* \). This implies that \(\frac{d}{d\phi} f(\phi; p^*) \) is decreasing for \(\phi \geq p^* \). As \(\frac{d}{d\phi} f(\phi; p^*) \big|_{\phi=p^*} = 0 \), we have \(\frac{d}{d\phi} f(\phi; p^*) \leq 0 \) for \(\phi \geq p^* \). Consequently \(f(\phi; p^*) \) is decreasing for \(\phi \geq p^* \). Finally, as \(f(p^*; p^*) = 0 \), we obtain \(f(\phi; p^*) \leq 0 \) when \(\phi \geq p^* \). The analysis for \(\phi \leq p^* \) is similar. This completes the proof. \(\square \)

Remark 3. This theorem implies that for the binary symmetric channel, the only \(PX \) for which we have the concavity of \(D((W\Phi_{X,t})_Y\| (WP)_Y) \) with respect to \(t \) is the uniform distribution.

When \(p \neq p^* \), the next proposition establishes a one-sided concavity result for the output relative entropy.

Proposition 1. In the same setting as Theorem 1, if \(p > p^* \), \(D((W\Phi_{X,t})_Y\| (WP)_Y) \) is concave for \(p \leq \phi \leq 1 \). Similarly, if \(p < p^* \), \(D((W\Phi_{X,t})_Y\| (WP)_Y) \) is concave for \(0 \leq \phi \leq p \).
Proof. We will prove the claim when \(p > p^* \). The case where \(p < p^* \) is analogous. We will show that \(\frac{d^2}{dp} f(\phi;p)|_{\phi=p} \) is decreasing w.r.t. \(p \) first. By Equation (5), we have
\[
g(p) := \frac{d^2}{dp} f(\phi;p)|_{\phi=p} = (a-b)^2 \left(\frac{1}{p^2} - 2 \frac{1}{q^2} \right)
\]
Since \(q = ap + b\tilde{p} \), we deduce that
\[
\frac{d}{dp} g(p) = -(a-b)^2 \left(\frac{2}{p^2} + \frac{b}{q^2} \right) \quad (9)
\]
Finally the third derivative can be expressed as\[
\frac{d^3}{dp^3} f(\phi;p) = \frac{1}{\phi^2} \left(\frac{d^2}{dp^2} f(\phi;p) \right) \left(\frac{\phi}{\phi^2} \right) - 2 \frac{\phi}{\phi^2} \frac{d^2}{dp^2} f(\phi;p) + \frac{d^2}{dp^2} f(\phi;p) - 2 \frac{\phi}{\phi^2} \frac{d^2}{dp^2} f(\phi;p) + \frac{d^2}{dp^2} f(\phi;p)
\]
Taking derivatives of \(f(\phi;p) \) w.r.t. \(\phi \), we have
\[
\frac{d}{d\phi} f(\phi;p) = \ln \frac{a_i b_i (a_i - b_i)}{(a_i + 1)} + 6 \frac{a_i b_i (a_i - b_i)}{(a_i + 1)}
\]
Equality (a) involves a bit of algebraic manipulations along with the observation that \(\sum_{i=1}^n a_i = \sum_{i=1}^n b_i = 1 \). The second derivative can be expressed in terms of the first derivative according to
\[
\frac{d^2}{d\phi^2} f(\phi;p) = \frac{1}{\phi^2} \left(\frac{d}{d\phi} f(\phi;p) \right) \left(\frac{\phi}{\phi^2} \right) - 2 \frac{\phi}{\phi^2} \frac{d}{d\phi} f(\phi;p) + \frac{d}{d\phi} f(\phi;p)
\]
Finally the third derivative can be expressed as
\[
\frac{d^3}{d\phi^3} f(\phi;p) = \frac{1}{\phi^2} \left(\frac{d^2}{d\phi^2} f(\phi;p) \right) \left(\frac{\phi}{\phi^2} \right) - 2 \frac{\phi}{\phi^2} \frac{d^2}{d\phi^2} f(\phi;p) + \frac{d^2}{d\phi^2} f(\phi;p)
\]
We can now generalize Theorem 1 to 2-to-n channels case. Denote \(\mathbf{a} = (a_1, \ldots, a_n) \), \(\mathbf{b} = (b_1, \ldots, b_n) \).

Theorem 2. For a 2-to-n channel represented as Equation (11), we reparameterize the input distribution according to Equation (5). If
\[
(a_i - b_i) a_i b_i = 0 \quad \forall i,
\]
then the output relative entropy \(D((W\Phi_{X,t})_Y || (W P)_Y) \) is linear w.r.t. \(t \). Else, the output relative entropy \(D((W\Phi_{X,t})_Y || (W P)_Y) \) is concave w.r.t. \(t \) under such reparametrization, if and only if \(p = p^* \) where \(p^* \) is the unique solution to
\[
\sum_{i=1}^n (a_i - b_i) a_i b_i = 0.
\]
Now assume that there exists some i such that $(a_i - b_i)a_i b_i \neq 0$. Let $g(p) := \sum_{i=1}^{n} \frac{(a_i - b_i)a_i b_i}{(a_i p + b_i p)^2}$. Observe that $g(p)$ is decreasing since
\[\frac{d}{dp} g(p) = -\sum_{i=1}^{n} \frac{2(a_i - b_i)^2 a_i b_i}{(a_i p + b_i p)^3} < 0, \]
for all $p \in (0, 1)$. Note that $g(0) = \sum_{i=1}^{n} \frac{(a_i - b_i)^2}{b_i} \geq 0$, $g(1) = -\sum_{i=1}^{n} \frac{(a_i - b_i)^2}{b_i} \leq 0$ (along with the observation that $\sum_{i=1}^{n} a_i = \sum_{i=1}^{n} b_i = 1$). Therefore we conclude that $g(p) = 0$ has a unique root $p^* \in [0, 1]$.

Since $f(p; p) = \frac{d}{dp} g(p) |_{p=p} = 0$ for any p, by considering the Taylor expansion at $\phi = p$ we see that the condition
\[
\begin{align*}
f(\phi; p) \begin{cases}
\geq 0, & \phi \leq p; \\
\leq 0, & \phi \geq p;
\end{cases}
\end{align*}
\]
forces $\frac{d^2}{d\phi^2} f(\phi; p)|_{\phi=p} = 0$. Therefore from Equation (14), if we have $g(p) = 0$ or that $p = p^*$ is necessary.

We now argue that the above condition is also sufficient. By Equation (14), we have $f(p^*; p^*) = \frac{d}{d\phi} f(\phi; p^*) |_{\phi=p^*} = \frac{d^2}{d\phi^2} f(\phi; p^*) |_{\phi=p^*} = 0$, and
\[\frac{d^3}{d\phi^3} f(\phi; p^*) |_{\phi=p^*} = -\frac{4}{p^* \cdot \sum_{i=1}^{n} \frac{(a_i - b_i)^2 a_i b_i}{(a_ip^* + b_ip^*)^3}} < 0. \] (16)
Using Lemma 2 completes the proof. \(\square\)

Lemma 2. Consider a real function $f(\phi) : (0, 1) \to \mathbb{R}$ and assume $f \in C^4$, i.e. four times differentiable, and satisfies the following properties:

1) $f(p) = f'(p) = f''(p) = 0,$ and $f'''(p) < 0$ for some $p \in (0, 1)$;
2) $f''(\phi) = a(\phi) \cdot f'(\phi) + b(\phi), \text{ where } a(\phi) > 0$ and $b(\phi) \leq 0 \text{ for } \phi \in (p, 1); \text{ while } a(\phi) < 0$ and $b(\phi) \geq 0 \text{ for } \phi \in (0, p).$

Then we have $f(\phi) \leq 0$ for $\phi \in (p, 1); \text{ and } f(\phi) \geq 0$ for $\phi \in (0, p)$.

Proof. From the Taylor expansion of $f(\phi)$ at p, we have $f(\phi) = f''(p)(\phi - p)^2 + O((\phi - p)^3)$ since $f'''(p)$ is strictly less than zero, then there exist some positive constant $q \in (p, 1)$, such that for $p < \phi \leq q$, we have $f(\phi) < 0$. Suppose there is some $s \in (q, 1)$, such that $f'(s) > 0$. $f'(p) = 0$, $f'(s) < 0$, $f'(s) > 0$ and $f'(\phi)$ is continuous over $\phi \in (p, s)$ imply that the minimum of $f'(\phi)$ over $\phi \in [p, s]$ exists and must be attained by some interior minimizer $\phi_0 \in (p, s)$, and $f'(\phi_0) < 0$. Also we have $f''(\phi_0) = 0$ by local optimality conditions for interior minimizers. Since $a(\phi) > 0$ and $b(\phi) \leq 0$ for $\phi \in (p, 1)$, we obtain
\[0 = f''(\phi_0) = a(\phi_0) \cdot f'(\phi_0) + b(\phi_0) \leq a(\phi_0) \cdot f'(\phi_0) < 0. \]

Contradiction arises! Hence such an s cannot exist. This guarantees $f'(\phi) \leq 0$ for $\phi \in (p, 1)$ and therefore $f(\phi) \leq 0$ for $\phi \in (p, 1)$. The other side $\phi \in (0, p)$ can be proved by similar arguments.

We then give an alternate proof of the sufficiency part in Theorem 2 as the following, without applying the above lemma.

Alternate Proof of sufficiency. We note that $\frac{d}{d\phi} f(\phi; p^*) = g(\phi) \ln \frac{\phi^*}{\phi^*}$. Here $g(\phi) = \sum_{i=1}^{n} \frac{(a_i - b_i) a_i b_i}{(a_i p^* + b_i p^*)^2}$ as defined in the previous proof. We know that $g(\phi)$ is decreasing over $\phi \in [0, 1]$, and hence $g(\phi) \leq 0$ for $\phi \geq p^*$. Also note that $\ln \frac{\phi^*}{\phi^*} \geq 0$ for $\phi \geq p^*$. Then we have $\frac{d}{d\phi} f(\phi; p^*) \leq 0$ for $\phi \geq p^*$, which further guarantees $f(\phi; p^*) \leq 0$ for $\phi \geq p^*$. The other side ($\phi \leq p^*$) can be proved analogously. \(\square\)

Conclusion and Further Work

We generalized the convexity result of Wyner and Ziv [11] for the binary symmetric channel to channels with binary inputs. This allows us to reformulate certain non-convex optimization problems as convex optimization problems. More importantly, it shows that for such optimization problems any local extremizer is also a global extremizer.

It is worth trying to generalize these results to non-binary alphabets. The main issue is in the fact that there are multiple paths that connect two distributions on a probability simplex. For differential entropies and AWGN channels, such a result (along the heat flow) has recently been obtained in [12]. We also hope that some of the techniques that we used to prove the concavity in the case where output alphabet is non-binary can be useful in generalizing such results.

References

