
Concavity of output relative entropy for channels
with binary inputs

Qinghua (Devon) Ding
Dept. of Computer Science and Engg.
The Chinese University of Hong Kong

Sha Tin, N.T., Hong Kong
Email: qhding@cse.cuhk.edu.hk

Chin Wa (Ken) Lau, Chandra Nair and Yan Nan Wang
Dept. of Information Engg.

The Chinese University of Hong Kong
Sha Tin, N.T., Hong Kong

Email: {kenlau,chandra,dustin}@ie.cuhk.edu.hk

Abstract—We generalize a convexity result due to Wyner and
Ziv to channels with binary inputs and arbitrary outputs. This re-
sults in a convex reformulation of some non-convex optimization
problems that arise naturally in multi-user information theory.

I. INTRODUCTION

The optimality of certain achievable rate regions for com-
munication settings in multiuser information theory, such as
the Marton’s region for the two-receiver broadcast channel, can
be verified by establishing that product distributions are the
global maximizers of a corresponding non-convex functional
on product spaces, [1]. A functional satisfying the above
property is said to satisfy global tensorization. As stated in [2]
a curious connection has been repeatedly observed between
functionals that satisfy global tensorization and those that
satisfy a so-called local tensorization property. One way to
reconcile this apparent relationship is to determine if all the
local maximizers of non-convex functionals that satisfy global
tensorization are also product distributions.

On a related note, information inequalities concerning non-
convex functionals have also been established [3] by determin-
ing all the local maximizers. Additionally, certain non-convex
functionals, such as the one arising in the capacity region
computation of the vector Gaussian channel [4] is shown to
have a unique local maximum. Inspired by these observations,
we seek to understand the geometric structure of certain infor-
mation functionals and determine its set of local extremizers.
The family considered in this paper can be considered as an
elementary but non-trivial sub-class of functionals. The results
in this paper extend the celebrated convexity result, sometimes
referred to as Mrs. Gerber’s lemma, of Wyner and Ziv to a
broader family of channels.

Given a conditional distribution WY |X , a reference dis-
tribution PX , and a non-negative parameter λ we will be
investigating non-convex optimization problems of the form

min
ΦX
{λD(ΦX‖PX)−D((WΦ)Y ‖(WP )Y )} , (1)

and see if these problems can be reparameterized into convex
optimization problems. In the above expression D(ΦX‖PX)
denotes the relative entropy, and the logarithms are assumed to
be with respect to base e. If such a reparameterization exists,
then any local minimizer would also be a global minimizer

(similar to the observation in the MIMO Gaussian broadcast
channel). The main idea is to choose a parameterization of ΦX
so that D(ΦX‖PX) is linear in the parameter and determine
whether the output relative entropy, D((WΦ)Y ‖(WP )Y ), is
concave. This approach is motivated by geodesically convex
reformulations of the Brascamp-Lieb constants in [5].

A. Motivation

Consider the following optimization scenarios originating in
multiuser information theory.

(i) In the Ahlswede-Korner source coding problem [6],
to compute the minimal weighted sum-rate, one is
faced with the following optimization problem: Given a
conditional distribution WY |X and an input distribution
ΦX , one seeks to compute the value of the following
optimization problem (parameterized by λ, λ ≥ 0):

min
U :U→X→Y

H(Y |U) + λI(U ;X).

(ii) In the degraded broadcast channel, to compute the
maximum weighted sum-rate RZ + λRY , one seeks
to compute the value of the following optimization
problem (parameterized by λ, 0 ≤ λ ≤ 1):

max
U,X:U→X→Y→Z

I(U ;Z) + λI(X;Y |U).

Both of these problems result in the computation of the
lower convex envelope with respect to ΦX for the functionals
H(Y ) − λH(X) and H(Z) − λH(Y ), respectively. Observe
that in the latter case, the channel WZ|Y is fixed, and in
the former case the conditional distribution WY |X is fixed.
Note that, when λ = 0 both functionals are concave in
ΦX and when λ = 1 both functionals are convex in ΦX .
For λ ∈ (0, 1) (the interesting regime), the function is not
necessarily convex or concave. Therefore the computation
of the lower convex envelope does not reduce to a convex
optimization problem and apriori the functionals may have
multiple local minimizers. Hence it is natural to ask if there
is a subset of the above family of problems for which under a
suitable reparameterization, the problem reduces to a convex
optimization problem.



Characterization of the lower convex envelope can be done
via Fenchel duality by computing its supporting hyperplanes.
To this end we seek to compute the minimum of

G(PX) := min
ΦX
{λD(ΦX‖PX)−D((WΦ)Y ‖(WP )Y )}

= min
ΦX

{
HΦ(Y )− λHΦ(X)−

∑
x

axΦX(x)

}
,

where (WΦ)Y denotes the distribution on Y induced by
the input distribution ΦX and the channel WY |X , HΦ(X)
denotes the Shannon entropy of X when X ∼ ΦX , and
ax =

∑
yW (y|x) ln

(WP )y
P (x)λ

. Thus G(PX) denotes the Fenchel
dual for the convex envelope of H(Y ) − λH(X), with
ax =

∑
yW (y|x) ln

(WP )y
P (x)λ

being the dual variables. This is
one way in which optimization problems of the type described
in (1) arise in multiuser information theory.

Another motivation for such optimization problems lie in
determining the optimal constants for Strong-Data-Processing
inequalities and in turn to determining limiting hypercontrac-
tivity parameters [7]. It has been shown in [8] that given
PX ,WY |X , the inequality

I(U ;Y )− ηI(U ;X) ≤ 0,

holds for all U : U → X → Y is Markov, if and only if, the
inequality

min
ΦX
{ηD(ΦX‖PX)−D((WΦ)Y ‖(WP )Y )} ≥ 0

holds. Note that the range of η depends on PX . One can also
define a similar η that holds for all input distributions PX (and
thus depends only on the channel WY |X ) to be

ηW := min{η : I(U ;Y )− ηI(U ;X) ≤ 0,

∀pUX : U → X → Y is Markov}

or equivalently (see Exercise 15.12 in [9])

ηW := min{η : λD(ΦX‖PX)−D((WΦ)Y ‖(WP )Y ) ≥ 0,

∀ΦX , PX}.

It has recently been shown [10] that for any WY |X it suffices to
consider PX having support on two alphabets and ΦX � PX
to compute ηW .
Remark 1. In light of this result, the case of X being binary
takes particular significance while considering the family of
optimization problems of the form

min
ΦX
{λD(ΦX‖PX)−D((WΦ)Y ‖(WP )Y )} , (2)

min
PX ,ΦX

{λD(ΦX‖PX)−D((WΦ)Y ‖(WP )Y )} . (3)

B. A convexity result due to Wyner and Ziv

While trying to compute the superposition coding region
of a degraded binary-symmetric broadcast channel (see item
(ii) in the Motivation), Wyner and Ziv showed that for any
α ∈ [0, 1

2 ], the function H2(α∗H−1
2 (u)) is convex in u, where

H2 : [0, 1
2 ] 7→ [0, ln 2] is binary entropy function given by

H2(x) = −x lnx − (1 − x) ln(1 − x) and H−1
2 : [0, ln 2] 7→

[0, 1
2 ] is its inverse. Here a ∗ b = a(1− b) + b(1− a) denotes

a two-point convolution.
We can interpret this result alternately as the following: Let

WY |X be the binary symmetric channel with crossover proba-
bility α. Let PX be the uniform distribution and parameterize
ΦX,t = (H−1

2 (t), 1 − H−1
2 (t)). Now observe that under this

parameterization, D(ΦX,t‖PX) = ln 2 − t is linear in t, and
D((WΦX,t)Y ‖(WP )Y ) = ln 2−H2(α ∗H−1

2 (t)) is concave
in t. Therefore the function

λD(ΦX,t‖PX)−D((WΦX,t)Y ‖(WP )Y )

is convex in t, reducing the computation of (1) to a convex
optimization problem. Note that ΦX,t determines a path along
the binary simplex such that D(ΦX,t‖PX) is linear in t and
D((WΦX,t)Y ‖(WP )Y ) is concave in t.

Thus the question we seek to address is: given any channel
WY |X , a reference distribution PX , and an initial distribution
ΦX , is it possible to parameterize the path from ΦX to
PX according to ΦX,t, where ΦX,0 = ΦX and ΦX,1 =
PX , with the property that D(ΦX,t‖PX) is linear in t and
D((WΦX,t)Y ‖(WP )Y ) is concave in t. We will answer
this question for channels with binary inputs and arbitray
output cardinalities. As stated in Remark 1, the case of binary
inputs (and outputs of arbitrary cardinality) is particularly
useful when computing ηW for channels with arbitrary input
alphabets.

We first present our results for channels with binary outputs
as we have slightly stronger results (see Proposition 1) in
this setting. Our main results are presented in Theorem 1
and Theorem 2; these results generalize the convexity of
H2(α ∗H−1

2 (u)).

II. CHANNELS WITH BINARY INPUTS AND BINARY
OUTPUTS

Let us denote a binary-input binary-output channel as

WY |X =

[
a b
ā b̄

]
. (4)

Here the matrix entry Wij = P (Y = i|X = j), ā = 1 −
a, b̄ = 1 − b. Let us denote ΦX,t = (φ(t), 1 − φ(t)) and
PX = (p, 1 − p) to characterize the parameterized path and
the reference distribution. Further we denote, for a, b ∈ [0, 1],

D2(a‖b) := a ln
a

b
+ (1− a) ln

1− a
1− b

to be the relative entropy between the two-point distributions
characterized by (a, 1−a) and (b, 1− b) respectively. We also
use φ̄ to represent 1− φ for brevity. We also assume that the
reference measure satisfies p > 0; otherwise D2(φ‖0) = ∞
for all φ 6= 0.

Note that D2(φ(t)‖p) is monotonically increasing (resp.
decreasing) when φ(t) ≥ p (resp. φ(t) ≤ p). Hence if we
enforce the linear dependence of input divergence on t, we
obtain

d2

dt2
D2(φ‖p) = φ′′ ln

φp̄

φ̄p
+
φ′2

φφ̄
= 0. (5)



where φ′ = dφ
dt and φ′′ = d2φ

dt2 .
Imposing the boundary conditions φ(0) = p and φ(1) = 1

(resp. φ(0) = 0 and φ(1) = p), then φ(t) can be uniquely de-
termined (due to the monotonicity of D2(φ(t)‖p)). Concretely,
for φ(t) ≥ p, φ(t) is the unique solution of

D2(φ(t)‖p) = t ln
1

p
,

and for φ(t) ≤ p, φ(t) is the unique solution of

D2(φ(t)‖p) = (1− t) ln
1

1− p
.

Remark 2. Note that this reparameterization φ(t) generalizes
the parameterization H−1

2 (t) employed by Wyner and Ziv for
the binary symmetric channel.

Let (WP )Y = (ap + bp̄, āp + b̄p̄) and (WΦ)Y = (aφ +
bφ̄, āφ+ b̄φ̄). We define q , ap+ bp̄, and ψ , aφ+ bφ̄. Now
we can calculate the second order derivative d2

dt2D2(ψ‖q) as
following:

d2

dt2
D2(ψ‖q) =ψ′′ ln

ψq̄

ψ̄q
+
ψ′2

ψψ̄

(a)
= − (a− b)φ

′2

φφ̄

ln ψq̄
ψ̄q

ln φp̄
φ̄p

+ (a− b)2 φ
′2

ψψ̄

(6)

where ψ′ = dψ
dt and ψ′′ = d2ψ

dt2 . Equality (a) follows
from equation (5). Suppose φ′ 6= 0, then concavity of
D((WΦX,t)Y ‖(WP )Y ) is equivalent to d2

dt2D2(ψ‖q) ≤ 0.
This, in turn, is equivalent to

f(φ; p) : = (a− b)2φφ̄ ln
φp̄

φ̄p
− (a− b)ψψ̄ ln

ψq̄

ψ̄q{
≥ 0, φ ≤ p;
≤ 0, φ ≥ p;

(7)

since ln φp̄
φ̄p
≤ 0 (resp. ≥ 0) when φ ≤ p (resp. φ ≥ p).

Remark that this condition (7) now does not depend on t.
One may calculate the derivatives of f(φ; p) w.r.t. φ as follows.

d

dφ
f(φ; p) =(a− b)2

[
(1 − 2φ) ln

φp̄

φ̄p
− (1 − 2ψ) ln

ψq̄

ψ̄q

]
d2

dφ2
f(φ; p) =(a− b)2

[
−2 ln

φp̄

φ̄p
+

(1 − 2φ)

φφ̄

]
− (a− b)3

[
−2 ln

ψq̄

ψ̄q
+

(1 − 2ψ)

ψψ̄

]
d3

dφ3
f(φ; p) = − (a− b)2

φ2φ̄2
+

(a− b)4

ψ2ψ̄2
.

(8)

We will show that d2

dφ2 f(φ; p) is decreasing w.r.t. φ in the
following lemma.

Lemma 1. The second-order derivative d2

dφ2 f(φ; p) is mono-
tonically decreasing in φ ∈ [0, 1].

Proof. Suffices to show d3

dφ3 f(φ; p) ≤ 0, which is equivalent
to ψ2ψ̄2 ≥ (a− b)2φ2φ̄2 or

(ψψ̄ + (a− b)φφ̄)(ψψ̄ − (a− b)φφ̄) ≥ 0.

When 0 ≤ a, b ≤ 1, we have

ψψ̄ − (a− b)φφ̄
=(aφ+ bφ̄)(āφ+ b̄φ̄)− (a− b)φφ̄
=aāφ2 + bb̄φ̄2 + (ab̄+ bā− (a− b))φφ̄
=aāφ2 + bb̄φ̄2 + 2bāφφ̄ ≥ 0

Similarly, we have

ψψ̄ + (a− b)φφ̄ = aāφ2 + bb̄φ̄2 + 2ab̄φφ̄ ≥ 0.

This proves the required inequality.

Theorem 1. Consider a binary channel represented as Equa-
tion (4), with a 6= b and a, b ∈ (0, 1). Assume that the input
distribution ΦX,t is reparametrized according to Equation (5),
then the output relative entropy D((WΦX,t)Y ‖(WP )Y ) is
concave w.r.t. t under such a reparametrization, if and only if
p is equal to

p∗ :=

√
bb̄√

bb̄+
√
aā
.

Proof. We will first show that p = p∗ is necessary. Calculate
the Taylor expansion of f(φ; p) at φ = p, and observe that
f(p; p) = 0 and d

dφf(φ; p)|φ=p = 0, we have f(p + ε; p) =
ε2

2
d2

dφ2 f(φ; p)|φ=p + O(ε3). Hence to satisfy the condition in
(7). i.e. for

f(φ; p)

{
≥ 0, φ ≤ p;
≤ 0, φ ≥ p;

we must have d2

dφ2 f(φ; p)|φ=p = 0. By Equation (8), this is
equivalent to

(a− b)1− 2q

qq̄
− 1− 2p

pp̄
= 0.

One can solve above equation explicitly and the only feasible
solution is p = p∗. Hence p = p∗ is necessary.

To show that it is sufficient, assume p = p∗. From Lemma
1, we have that d2

dφ2 f(φ; p∗) is decreasing w.r.t. φ. Since
d2

dφ2 f(φ; p∗)|φ=p∗ = 0, then d2

dφ2 f(φ; p∗) ≤ 0 for φ ≥ p∗.
This implies that d

dφf(φ; p∗) is decreasing for φ ≥ p∗. As
d
dφf(φ; p∗)|φ=p∗ = 0, we have d

dφf(φ; p∗) ≤ 0 for φ ≥ p∗.
Consequently f(φ; p∗) is decreasing for φ ≥ p∗. Finally, as
f(p∗; p∗) = 0, we obtain f(φ; p∗) ≤ 0 when φ ≥ p∗. The
analysis for φ ≤ p∗ is similar. This completes the proof.

Remark 3. This theorem implies that for the binary symmetric
channel, the only PX for which we have the concavity of
D((WΦX,t)Y ‖(WP )Y ) with respect to t is the uniform
distribution.

When p 6= p∗, the next proposition establishes a one-sided
concavity result for the output relative entropy.

Proposition 1. In the same setting as Theorem 1, if p > p∗,
D((WΦX,t)Y ‖(WP )Y ) is concave for p ≤ φ ≤ 1. Similarly,
if p < p∗, D((WΦX,t)Y ‖(WP )Y ) is concave for 0 ≤ φ ≤ p.



Proof. We will prove the claim when p > p∗. The case where
p < p∗ is analogous. We will show that d2

dφ2 f(φ; p)|φ=p is
decreasing w.r.t. p first. By Equation (8), we have

g(p) :=
d2

dφ2
f(φ; p)|φ=p = (a− b)2 1− 2p

pp̄
− (a− b)3 1− 2q

qq̄
.

Since q = ap+ bp̄, we deduce that
d

dp
g(p) = (a− b)2

(
− 1

p2
− 1

p̄2

)
− (a− b)4

(
− 1

q2
− 1

q̄2

)
= −(a− b)2

b(2(a− b)p+ b)

p2q2
− (a− b)2

ā(2(a− b)p̄+ ā)

p̄2q̄2

(9)

= −(b− a)2
b̄(2(b− a)p+ b̄)

p2q̄2
− (b− a)2

a(2(b− a)p̄+ a)

p̄2q2

(10)

Therefore, irrespective of the sign of a − b (see (9) or
(10)), we have d

dpg(p) ≤ 0. Since g(p∗) = 0 and g(p) is
decreasing w.r.t p, g(p) ≤ 0 when p ≥ p∗. Moreover, by
Lemma 1, we have d2

dφ2 f(φ; p) is decreasing w.r.t φ and hence
d2

dφ2 f(φ; p) ≤ g(p) ≤ 0 for all φ ≥ p. Since f(p; p) = 0

and d
dφf(φ; p)|φ=p = 0, we have f(φ; p) ≤ 0 for all φ ≥ p.

This implies D((WΦX,t)Y ‖(WP )Y ) is concave with t when
p ≤ φ ≤ 1.

III. CONCAVITY OVER A 2-TO-n CHANNEL

We now generalize our result from binary outputs to 2-to-n
channels for arbitrary finite output dimension n. To do so, we
follow the same approach to find the p such that when we
make the input divergence linear in t, the output divergence
becomes concave in t. The key difference is that one is unable
to explicitly identify the p∗, We denote the channel as

W (y|x) =


a1 b1
a2 b2
...

...
an bn

 (11)

Here the matrix entry Wij = P (Y = i|X = j). The
differential equation that makes the input divergence D2(φ‖p)
linear is same as the binary channel case, as is shown in Equa-
tion (5). However, the expression for the output divergence
D((WΦX,t)Y ‖(WP )Y ) is different. Define qi = aip+bip̄ and
ψi = aiφ+ biφ̄. Denote ψ = (ψ1, · · · , ψn), q = (q1, · · · , qn)
and D((WΦX,t)Y ‖(WP )Y ) = D(ψ‖q). We have

D(ψ‖q) =

n∑
i=1

ψi ln
ψi
qi

d2

dt2
D(ψ‖q) =

n∑
i=1

(
ψ′′i ln

ψi
qi

+
ψ′2i
ψi

)
=

n∑
i=1

[
(ai − bi)φ′′ ln

ψi
qi

+
(ai − bi)2φ′2

ψi

]
(a)
=

n∑
i=1

[
−(ai − bi)

φ′2

φφ̄
ln
ψi
qi

(
ln
φp̄

φ̄p

)−1

+
(ai − bi)2φ′2

ψi

]

(12)

where ψ′i = dψi
dt and ψ′′i = d2ψi

dt2 .
Here we used Equation (5) in equality (a). Requiring, the

output relative entropy to be concave, i.e. the second-order
derivative to be non-positive, is then equivalent to

f(φ; p) :=

n∑
i=1

[
−(ai − bi) ln

ψi
qi

+ (ai − bi)2φφ̄

ψi
ln
φp̄

φ̄p

]
{
≥ 0, 0 ≤ φ ≤ p;
≤ 0, p ≤ φ ≤ 1.

Taking derivatives of f(φ; p) w.r.t. φ, we have

d

dφ
f(φ; p) = ln

φp̄

φ̄p

n∑
i=1

(ai − bi)
2(−aiφ2 + biφ̄

2)

(aiφ+ biφ̄)2

(a)
= ln

φp̄

φ̄p

n∑
i=1

aibi(ai − bi)

(aiφ+ biφ̄)2
.

(13)

Equality (a) involves a bit of algebraic manipulations along
with the observation that

∑n
i=1 ai =

∑n
i=1 bi = 1. The second

derivative can be expressed in terms of the first derivative
according to

d2

dφ2
f(φ; p) =

1

φφ̄

n∑
i=1

aibi(ai − bi)

(aiφ+ biφ̄)2
− 2 ln

φp̄

φ̄p

n∑
i=1

(ai − bi)
2aibi

(aiφ+ biφ̄)3

=
1

φφ̄

(
d

dφ
f(φ; p)

)(
ln
φp̄

φ̄p

)−1

− 2 ln
φp̄

φ̄p

∑ (ai − bi)
2aibi

(aiφ+ biφ̄)3
.

(14)
Finally the third derivative can be expressed as

d3

dφ3
f(φ; p) =

(
1

φ̄2
− 1

φ2

) n∑
i=1

aibi(ai − bi)
(aiφ+ biφ̄)2

+ 6 ln
φp̄

φ̄p

∑ (ai − bi)3aibi
(aiφ+ biφ̄)4

− 4

φφ̄

∑ aibi(ai − bi)2

(aiφ+ biφ̄)3
.

We can now generalize Theorem 1 to 2-to-n channels case.
Denote a = (a1, · · · , an), b = (b1, · · · , bn).

Theorem 2. For a 2-to-n channel represented as Equation
(11). we reparameterize the input distribution according to
Equation (5). If

(ai − bi)aibi = 0 ∀i,

then the output relative entropy D((WΦX,t)Y ‖(WP )Y )
is linear w.r.t. t. Else, the output relative entropy
D((WΦX,t)Y ‖(WP )Y ) is concave w.r.t. t under such repa-
rameterization, if and only if p = p∗ where p∗ is the unique
solution to

n∑
i=1

(ai − bi)aibi
(pai + p̄bi)2

= 0. (15)

Proof. If (ai − bi)aibi = 0 ∀i, then from (13) we have that
f(φ; p) is a constant in φ, and setting φ = p, implies that
f(φ; p) = 0 for all φ. This implies that d2

dt2D(ψ‖q) = 0 and
hence the output relative entropy D((WΦX,t)Y ‖(WP )Y ) is
linear w.r.t. t.



Now assume that there exists some i such that (ai −
bi)aibi 6= 0. Let g(p) :=

∑n
i=1

(ai−bi)aibi
(aip+bip̄)2

. Observe that g(p)
is decreasing since

d

dp
g(p) = −

n∑
i=1

2(ai − bi)2aibi
(aip+ bip̄)3

< 0,

for all p ∈ (0, 1). Note that g(0) =
∑n
i=1

(ai−bi)2
bi

≥ 0,

g(1) = −
∑n
i=1

(ai−bi)2
ai

≤ 0 (along with the observation
that

∑n
i=1 ai =

∑n
i=1 bi = 1). Therefore we conclude that

g(p) = 0 has a unique root p∗ over [0, 1].
Since f(p; p) = d

dφf(p; p)|φ=p = 0 for any p, by consider-
ing the Taylor expansion at φ = p we see that the condition

f(φ; p)

{
≥ 0, φ ≤ p;
≤ 0, φ ≥ p;

forces d2

dφ2 f(φ; p)|φ=p = 0. Therefore from Equation (14),
require g(p) = 0 or that p = p∗ is necessary.

We now argue that the above condition is also sufficient.
By Equation (14), we have f(p∗; p∗) = d

dφf(φ; p∗)|φ=p∗ =
d2

dφ2 f(φ; p∗)|φ=p∗ = 0, and

d3

dφ3
f(φ; p∗)|φ=p∗ = − 4

p∗p̄∗

n∑
i=1

(ai − bi)2aibi
(aip∗ + bip̄∗)3

< 0. (16)

Using Lemma 2 completes the proof.

Lemma 2. Consider a real function f(φ) : (0, 1) → R and
assume f ∈ C4, i.e. four times differentiable,and satisfies the
following properties:

1) f(p) = f ′(p) = f ′′(p) = 0, and f ′′′(p) < 0 for some
p ∈ (0, 1);

2) f ′′(φ) = a(φ) ·f ′(φ)+b(φ), where a(φ) > 0 and b(φ) ≤
0 for φ ∈ (p, 1); while a(φ) < 0 and b(φ) ≥ 0 for
φ ∈ (0, p).

Then we have f(φ) ≤ 0 for φ ∈ (p, 1); and f(φ) ≥ 0 for
φ ∈ (0, p).

Proof. From the Taylor expansion of f ′(φ) at p, we have
f ′(φ) = f ′′′(p)

2 (φ − p)2 + O((φ − p)2). Since f ′′′(p) is
strictly less than zero, then there must exist some positive
constant q ∈ (p, 1), such that for p < φ ≤ q, we have
f ′(φ) < 0. Suppose there is some s ∈ (q, 1), such that
f ′(s) > 0. f ′(p) = 0, f ′(φ) < 0, f ′(s) > 0 and f ′(φ)
is continuous over φ ∈ (p, s) imply that the minimum of
f ′(φ) over φ ∈ [p, s] exists and must be attained by some
interior minimizer φ0 ∈ (p, s), and f ′(φ0) < 0. Also we
have f ′′(φ0) = 0 by local optimality conditions for interior
minimizers. Since a(φ) > 0 and b(φ) ≤ 0 for φ ∈ (p, 1), we
obtain

0 = f ′′(φ0) = a(φ0) · f ′(φ0) + b(φ0) ≤ a(φ0) · f ′(φ0) < 0.

Contradiction arises! Hence such an s cannot exist. This
guarantees f ′(φ) ≤ 0 for φ ∈ (p, 1) and therefore f(φ) ≤ 0
for φ ∈ (p, 1). The other side φ ∈ (0, p) can be proved by
similar arguments.

We then give an alternate proof of the sufficiency part
in Theorem 2 as the following, without applying the above
Lemma 11.

Alternate Proof of sufficiency. We note that d
dφf(φ; p∗) =

g(φ) ln φp̄∗

φ̄p∗
. Here g(φ) =

∑n
i=1

(ai−bi)aibi
(aiφ+biφ̄)2

as defined in
the previous proof. We know that g(φ) is decreasing over
φ ∈ [0, 1], and hence g(φ) ≤ 0 for φ ≥ p∗. Also note that
ln φp̄∗

φ̄p∗
≥ 0 for φ ≥ p∗. Then we have d

dφf(φ; p∗) ≤ 0 for
φ ≥ p∗, which further guarantees f(φ; p∗) ≤ 0 for φ ≥ p∗.
The other side (φ ≤ p∗) can be proved analogously.

CONCLUSION AND FURTHER WORK

We generalized the convexity result of Wyner and Ziv [11]
for the binary symmetric channel to channels with binary
inputs. This allows us to reformulate certain non-convex
optimization problems as convex optimization problems. More
importantly, it shows that for such optimization problems any
local extremizer is also a global extremizer.

It is worth trying to generalize these results to non-binary
alphabets. The main issue is in the fact that there are multiple
paths that connect two distributions on a probability simplex.
For differential entropies and AWGN channels, such a result
(along the heat flow) has recently been obtained in [12]. We
also hope that some of the techniques that we used to prove
the concavity in the case where output alphabet is non-binary
can be useful in generalizing such results.
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