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Abstract—In this article, we revisit the classical problem of
channel coding and obtain novel results on properties of capacity-
achieving codes. Specifically, we give a linear algebraic charac-
terization of the set of capacity-achieving input distributions for
discrete memoryless channels. This allows us to characterize the
dimension of the manifold on which the capacity-achieving distri-
butions lie. We then proceed by examining empirical properties
of capacity-achieving codebooks by showing that the joint-type
of k-tuples of codewords in a good code must be close to the k-
fold product of the capacity-achieving input distribution. While
this conforms with the intuition that all capacity-achieving codes
must behave like random capacity-achieving codes, we also show
that some properties of random coding ensembles do not hold
for all codes. We prove this by showing that there exist pairs
of communication problems such that random code ensembles
simultaneously attain capacities of both problems, but certain
(superposition ensembles) do not.

Due to lack of space, several proofs have been omitted but
can be found at https://sites.google.com/view/yihan/ [1].

I. INTRODUCTION

Shannon’s celebrated channel coding theorem [2] in one
fell swoop simultaneously derived the fundamental limits of
reliable communication over noisy channels, and demonstrated
coding strategies that approach these fundamental limits. In
this work we revisit this classical problem and derive novel
results in a variety of directions.

1) Capacity-achieving input distributions: First, it has long
been known [3] in the literature that for some discrete mem-
oryless channels (DMCs) the capacity-achieving distributions
are not necessarily unique, and in general may be a convex
subset of the probability simplex Ay over the input alphabet
X of the DMC. Prior results [4] in this direction have
required solving systems of non-linear equations that do not
shed insight into the structure of these optimizing solutions.
Others [5], [6], [7] have designed alternating minimization
for efficient computation of capacity. Our first result gives
a remarkably clean characterization of the set of capacity-
achieving input distributions for general DMCs as the intersec-
tion of a specific affine space intersected with the probability
simplex Ay. Consequences of this characterization (and the
techniques involved) include:

o A characterization (as the rank of a system of linear
equations) of the dimension of the manifold on which
capacity-achieving distributions for a given DMC lie
(Theorem 1).
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 Ancillary characterizations of DMCs with unique opti-
mizing input distributions in terms of linear-algebraic
properties of the channel transition law viewed as a matrix
(Corollaries 14 and 15).

+ The perhaps surprising example of a DMC Wy | x for
which the set of optimizing input distributions does not
“tensorize” (Claim 3). That is, consider the “two-use
channel” corresponding to the DMC with input alphabet
X x X, output alphabet ) x ), and channel law W%QX =
Wy | x®@Wy | x. We can show that the set of optimizing
input distributions for the two-use channel is much larger
(indeed, lies in a higher dimensional manifold) than the
convex hull of the tensor product of the optimizing input
distributions of the underlying DMC. We view this as a
somewhat unexpected result, especially in the context of
the well-known fact [8] that the capacity of the DMC
does indeed tensorize (for any integer k the capacity of
the k-use channel is k times the capacity of the one-use
channel).

2) Properties all “good” codebooks must satisfy: Next, we
move to examining empirical properties of capacity-achieving!
code ensembles. As a proxy to guide our intuition, we use
as benchmarks properties exhibited by the capacity-achieving
random code ensembles suggested by Shannon [2], and prove
both “positive” and ‘“negative” results in this direction, as
described below.

Joint types of codeword k-tuples: One of our results in
this direction is that of joint distributions of codewords.
As a benchmark, suppose Wy |x has a unique optimizing
input distribution P3, then it can be directly verified that
for any constant k, an overwhelming fraction of codes in
Shannon’s capacity-achieving random coding ensemble satisfy
the property that “most” k-tuples of codewords have joint type
that is “close” (say in total variation distance) to the product
distribution P)*;@k. Our “positive” result in this context is that
indeed such a property must be true for any capacity-achieving
sequence of codes. That is, given any code C of rate J-close
to the Shannon capacity and with a probability of error of
at most €, k codewords sampled uniformly at random from
C will, with probability at least 1 — 7(e,d) have joint type
at most A(e, d) close to P)";@k, for explicit functions 7 and
A that converge to zero as € and § converge to zero. See
Claims 12 and 13, Theorem 4 and Corollaries 6, Lemma 7.

Given any memoryless channel W, we will interchangeably use “W -good”
or “capacity-achieving” to describe codes which have rate arbitrarily close to
the capacity of W and have average error probability decaying in blocklength
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Aside from being of intrinsic interest, this fundamental fact
about any capacity-achieving code ensemble comes in handy
in proving impossibility results for some channel models. In
a companion paper [9], we use a corresponding result for
AWGN channels to show a novel upper bound on the capacity
of a certain two-way adversarially jammed channel. For this
outer bound, we critically use the fact that even if the adversary
is unable to infer the specific codewords transmitted by the two
legitimate users, he is nonetheless able to rely on the fact that
with high probability their transmitted codewords are “close
to orthogonal”, and thereby can tailor his jamming strategy to
such pairs of codewords.

Finally, we show some ‘“negative” results — some proper-
ties that are satisfied with overwhelming probability (double-
exponentially close to one!) by the random coding ensemble
are in fact not necessarily true for all code ensembles. Specif-
ically, we show:

o Non-universality: Random code ensembles are “univer-
sal” in the sense that for any two channels Wy |x and
}’,‘ y Wwith the same capacity and the same optimiz-
ing input distribution, the same random code ensem-
ble is capacity-achieving for both channels. However,
we demonstrate pairs of channels such that a capacity-
achieving ensemble (in particular, superposition code
ensembles [10]) for one is provably far from capacity-
achieving for the other (Lemma 8).

o Non-list-decodability: Random code ensembles are
known to simultaneously achieve the list-decoding capac-
ity [11] for corresponding “adversarial” channels. That is,
even if the noise were “worst case” with the same noise
parameters as the underlying DMC for which the random
code ensemble was designed, the decoder is able to sal-
vage something by outputting a “small” (constant!) sized
list guaranteed to contain the transmitted codeword. We
show that again superposition-based codes can violate this
correspondence by demonstrating a capacity-achieving
code ensemble for a DMC such that it necessarily results
in codes which have exponential list sizes (Lemma 9).

A. Prior work

There is a significant body of work formalizing the property
that good codes for memoryless channels must induce an
output distribution which approximates the capacity-achieving
output distribution. Consider a DMC W with finite input
alphabet and capacity C. If {C,,} is a sequence of codes of rate
C—¢€/2 < R < C and achieving o(1) probability of error over
W, then the induced output distribution when a random code-
word from C,, is passed through W is close to the capacity-
achieving output distribution [12]: L D(Py | (P§)®") < e for
large enough n, where D(P|Q) denotes the Kullback-Leibler
divergence between P and () and P;f denotes the capacity-
achieving output distribution.

This holds even if we are allowed to tolerate a small but
nonvanishing probability of error, and even under the total
variation distance dry [13]. These properties hold for all
channels that satisfy a strong converse, and in particular the
AWGN channel [12].

It is also known that the kth order empirical output distri-
bution of the code approximates the k-fold capacity-achieving
output distribution [14]. Let

~ k) "‘fl L )=( )
Qik (Q) — TiyeoyTitk—1)=(A1,...,0k
= = n—k+1

and define kth order empirical input distribution of the code
C to be )
ék)(ah.”’ak):ﬁZQg)' (D

zeC

It was shown in [14] that

d(k) = DEQY| Pg.),

min

Xk I(Xk;YE)=kC
is vanishing in n for k = O(1). It is important to point out
a subtlety here. While 1 D(Py[(P§)®") — 0 for a good
sequence, D(Py|(P5)®™") is asymptotically larger than zero.
Therefore, the approximability depends on the metric used,
and the channel: For the AWGN channel, the asymptotic
Wasserstein distance between Px and (P3)®" tends to zero.
The convergence of the empirical output distribution to the
n-fold capacity-achieving output distribution also holds for
certain fading channels [15].

Other necessary conditions for good codes have been stud-
ied, including a tight characterization of the peak-to-average-
power ratio of good codes for AWGN channels [16], [17].
Properties of the empirical distribution of good codes for
multiple access channels were studied in [18], and good
quantizers for lossy source coding was studied by [19], [20].

A closely related property of codes is resolvability [12],
[21]. Here, the goal is to design codebooks C, such that
the output distribution when a random codeword is passed
through W is close to PE®" in total variation distance,
ie., dTV(Py,P§®”) — 0 as n — oo. This is proved to
be fundamental in many problems including physical layer
security [22], [23], [24], [25] and covert communication [26],
[27], [28].

The first systematic study of an ordering of channels
was [29] which defined the notion of less noisy and more
capable channels. Specifically, a channel V' is more capable
than W if for every code C achieving e probability of error over
W can be expurgated with negligible loss of rate to achieve
€ probability of error over V. An equivalent condition is that
I(X;Yv) = I(X; Yw) for all input distributions Px. This has
been studied extensively in the context of broadcast channels
(see, e.g., [30], [31], [32], [33] for an incomplete list).

A recent paper closely related to ours is [34] which found
upper bound on capacity of DMCs with positive invertible
channel matrix.

We would like to point out that in contrast to [14] which
studied (1), we examine the kth order type of k-tuples of
codewords

1 n
Tgl,...,gk (al? e ’a’k) = g Z 1{3?17‘,=a1,...,zki=ak.}7
=1

233 gvhere x;; denotes the jth component of z;.
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II. MAIN RESULTS

Some of our primary results come from the property that a
DMC W is a linear operator from Px € Ay to Py € Ay, i.e.,
representing Px and Py as column vectors’ p v and p . we
can write WBX = p,.- We assume that the input and output
alphabets are finite.

1) Optimizing input distributions: Our first result is the
following linear-algebraic characterization of the space of
capacity-achieving input distributions:

Theorem 1 (Characterization of capacity-achieving distribu-
tions). Given W = (31’32’ e ’Bm) where p. denotes the
ith column, let v’ = (H(p,),H(p,), -~ . H(p,)). For any
capacity-achieving distribution p* for W, the whole set of
capacity-achieving distributions is P = {Q*+ker (‘;V) }mRT

This can be generalized to the k-use channel W®F,

Theorem 2 (Capacity-achieving distributions for k-use chan-

nel). Given W and r" = (r1,79,+ ,7.,) as in Theorem I.

If we have a capacity-achieving distribution P3; for W, then

the whole set of capaci%;achieving distribution for W®* is
. k

P = {PE® + ker (‘;V(k) )} ART.

This yields the (perhaps surprising) result that for k > 2,
the space of capacity-achieving input distributions for the
k-use channel P%, can be much larger than the convex
hull of (P%)®*, where P% is th space of optimizing input
distributions of W.

Claim 3. The following noisy typewriter channel

/2 0 0 1/2
12 12 0 o0

=10 12 12 o] @)
0 0 1/2 1)2

has P% equal to the convex hull of {(1/2,0,1/2,0)",
(0,1/2,0,1/2)T}. Specifically, dim(P%) = 1.
For k =2, dim(P%,) = 4% — 3% > .

2) Empirical properties of good codes: Our second result
is that the empirical joint distribution of k-tuples of codewords
is close to P%, for k = O(1).

Theorem 4 (Empirical properties of DMC-good codes). For
any € > 0 and k = O(1), any good code for DMC W with
P%. as defined in Theorem 2 satisfies

1
oF, 2

917~~7£k)€ck

Qrer'ggk ]-{dT\/(TEl ,,,,, Qk,Q)>e} = 0(1)1

where drv (-, ) denotes total variation distance.

This suggests that all capacity-achieving codes must behave
very much like random capacity-achieving ensembles. This
behaviour is inherited by good codes for the AWGN channel.
Intuition suggests that these must behave like random Gaussian
codebooks, in the sense that pairs of codewords are “almost”

2Henceforth, we will use the pmf Px and its vector form Py interchange-
ably to denote the same object.

orthogonal to each other. We can show that this intuition is
indeed correct.

Lemma 5. Given any two deterministic codes C1 and Cy that
are good for AWGN(P, N) channels, for any constant n €
(0,1), it holds that

limsup Pr [{xy,x5) > nn] =0,
n—oo X;~C1
x,~Ca2
where the probability is taken over X, and x, that are chosen
uniformly at random from Cy and Ca, respectively.

This gives us the following corollaries:

Corollary 6. Given any deterministic codes C1, Co and C that
are good for AWGN(P, N) channels, for any constant n €
(0,1) and k € Z>, it holds that

limsup Pr [(x,x5) <—nn] =0, (3)
n—oo X;~Ci
x,~Ca
limsup Pr [[(xy,%5)[>nn] =0, (4
n—0o0 51’”81
x,~Ca
limsup Pr [|<§, §’>} > nr]] =0. (5
n—oo E’E/"-MC
lim sup Pr U {|<§i,§j>| > m]} =0. (6)
n—oo Kl’...yzk"h"'c i,je[k]

i#]
Using similar ideas, we prove another empirical property
that is universal to all AWGN-good codes.

Lemma 7. Given any deterministic code C that is good for
AWGN(P, N) channels, for any constant n € (0,1), it holds
that

limsup Pr [H;HQ < /nP(1-— 17)] =0.
n—own X~C

3) Impossibility results: While the previous results rein-
force the intuition that good codebooks behave like random
code ensembles, this does not necessarily hold in all cases.
Given a pair of channels V,W having the same capacity-
achieving input distribution, a randomly chosen capacity-
achieving codebook will, with high probability, achieve van-
ishingly small probability of error over both U, V. However,
there are ensembles of codebooks for which this is not true.

More concretely, consider the ensemble of binary superpo-
sition codes [10] of rate R with 2"%1 cloud centers and 27%2
satellite codewords in each cloud. The cloud centers are chosen
uniformly at random from [} while the satellite codewords are
chosen uniformly from a ball of Hamming radius ng around
the cloud center. Let us call a typical code from this ensemble
Csup (¢, R1, R2). We can prove the following

Lemma 8. Fix a p € (0,1/2) and small 6 > 0. A typical code
Csup(q, R1, R2) with R+ Ry = 1—H(p)—¢6 and Ry = (1 —
H(p))H(q) — 6 achieves vanishingly small error probability
over the BEC(H (p)). However, no expurgated subcode of the
same rate can achieve vanishingly small error probability over
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The above result is not surprising, given [32] which showed
that the BEC is more capable than the BSC. However, our
result gives an entire ensemble of codes where most codes are
good for the BEC but cannot have vanishing probability of
error over the BSC even after rate-lossless expurgation.

This ensemble of superposition codes is more powerful
in giving such counterexamples beyond pairs of discrete
memoryless channels. One such question that we can address
is whether every capacity-achieving code for the BSC(p) be
expurgated without loss of rate to also achieve O(poly(n))
list sizes over the bitflip-p channel. This is true for random
binary codes, but not for superposition codes:

Lemma 9. Fix any p € (0,1/2). The code Csup(q, R1, R2)
Sfor any 0 < q < 1/2 and small 6 > 0 with Ry = H(q *
p)— H(p)— 6 and Ry + Ro = 1 — H(p) — § cannot achieve
subexponential list sizes over the bitflip-p channel.

The other question is whether codes with fractional min-
imum distance p achieving the GV bound of 1 — Hs(p)
also achieve the capacity of the BSC(p). This holds, for e.g.,
for random binary linear codes but once again, not for all
ensembles:

Lemma 10. There exist codes with minimum distance at least
np but no expurgated subcodebook of the same asymptotic rate
can achieve vanishing probability of error over the BSC(p).

Let us now proceed to examine each item in more detail.

III. PROOF SKETCHES

A. Linear algebraic characterization of the set of capacity-
achieving input distributions

Our goal is to understand the following properties: For k =
1,2,...,n,

1) Py, : the property that W®¥ is an injective linear operator
from (RIYN® to (RIVH®k;

2) Sy : the property that W®* as a k-use channel has unique
product capacity-achieving input distribution P;®k;

3) Ty : the property that any code C achieving o(1) prob-
ability of error over W has most k-tuples of codewords
“close” to the k-times capacity-achieving input distribu-
tion, i.e., for all 6 > 0 we have

1
[HE 2

(€1 5eeercp JECH

1{dTv(7'£1 ..... e PEOF)>8) T o(1).

The following results are elementary:

. ]P)l = Sk
e S; = P;. Indeed, Muroga [3] has the following example
1/2 1/4 0
W=1\(1/2 1/4 0]. @)
0 1/2 1
. Sl = S}C

As a warmup, we show the following:

Lemma 11 (Linear independence lemma). If W has unique
P%, and supp(P%) = X' < X, then the set of conditional
distributions { Py |x—;,1 € X'} is linearly independent.

Proof. W.lo.g., we let X' = [m'] where m’ = |X’| and m =
|X'|. Denote p(i) = Pyix—inTi = H(p(i)),Vi € X. The opti-
mizing input distribution p%. = (p{,p3, -~ ,p,, 0, ,0)T,
where p; > 0,Vi € [m/].

We now suppose {p(i),4 € [m’]} is not linearly independent.
Then we have }.;" | a;p(i) = 0 for some a # 0. Equivalently,

Wa = 0. Note we have Zzl a; = Z:i1 a;1"p(i) = 0, where
1 is the all-1’s vector. Consider a small perturbation of 12?( as
Py, = (pi +ear,p3 + eas, -+ ,py, + €m0, ,0) for
some ¢ > 0. Clearly Px. # Q;‘(, and for small enough (but
non-zero) e (say, for € € [—a, 3] for suitable a, 5 > 0), the
vector Py is a valid pmf.

Wp

=—X,e

However, py. . Wp% + eWa = pg,

and gTQX)E = KTQ’)"( terla = ﬁsz)"( + e(X ary). If
Z?:l a;r; = 0, then we have fTBXE = gTB; and hence
[(XYe) = Hipv) —r'pe = Hpp) —r'py = C.

This contradicts the assumption of uniqueness of B; It
S jar; # 0, then w.lo.g., assume >  a;r; > 0, then
we have for € = —a, I(X;Y.) = C + a(Xl, airy) > C,
leading to a contradiction. [

We now show that if the capacity-achieving input distri-
bution P% is unique, then most codewords of a capacity-
achieving code have type close to P3%. The proof is via
contradiction, where we construct a subcodebook of the same
asymptotic rate but a vanishingly small error probability for
an input-constrained channel of smaller capacity.

Claim 12. If W has unique capacity-achieving input distri-
bution P%, then S — Ti.

Proof. Suppose a W-good code C satisfies
* —
Elilé [dT\/(Ti, P ) > 6] =1,

for some constant 7 > 0. Then (' =
{z €C :dry(rs, P*) > €} is a large (of size |C|n) code
which has o(1) probability of error when used on channel
W' with the same transition law as W, plus input constraint
drv (7, P*) > €. Moreover, W' has capacity

max

I(X:Y) <C,
P: dTv(P,P*)>E

which contradicts the continuity of mutual information.  [J

We can strengthen this to show that even the k-th order
types of most k-tuples of codewords must be close to P}”}@k .
The fundamental idea is that if C is capacity-achieving for
W, then C* is capacity-achieving for TW®* We can then use
Claim 12 for the k-use channel.

Claim 13. If W has unique capacity-achieving input distri-
bution P%, then S < Ty, for k = O(1).

B. The Space of Capacity-Achieving Distributions

In the following, we will give a characterization of the entire
set of capacity-achieving distributions for k-use channels,

234@1ven one capacity-achieving distribution for WW.
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1) Proof of Theorem 1: First, we will show that any p € P%
is a valid distribution. Note p = p* +¢ for some g € ker ().
Since Wq = 0, we have qu = lTWq = 0 (where 1 is the
all-ones vector). This then gives ngiz lTQ; = 1. Since
pE R™ . it is a valid distribution.

Let us now show that p is capacity-achieving. Note that
py = Wp=W(p—3) =Wpi =p}.and r'p = rp%
for the same reason. Thus, I(X;Y) = H(Y) — H(Y|X) =
H(Y*) —rTp = HY*) —r p* = [(X*;Y*). Thus p is
capacity-achieving. a ;

Now we prove that any capacity-achieving distribution p
is in P%. Note W(p — p*) = 0 by uniqueness of p%. And
we have 0 = I(X;Y) — I(X*;Y*) = r"(p — p*). Thus,
p— B* € ker (KZ) Since pPE R, the claim is proved. O

Corollary 14 (Unique P} for weakly symmetric channel). A
weakly symmetric channel® has unique P% iff W ois injective.

Proof. Since P} = il is always a capacity-achieving dis-
tribution, any direction in ker(W) will be feasible in Theo-
rem 1. O

Corollary 15 (Uniqueness of P%). If ker (1) = {0}, then p*
is unique. B

Proof. Since ker (ZZ) = {0}, by Theorem 1, P% = {P%} n
R = {P%}. Thus P¥ is unique. O

Example 1 (Muroga’s channel). The channel W in (7) is not
injective, but note 7" = (1,3/2,0), and ker (ﬂ) = {0}, thus
it still has unique P%. -

Remark 2. This characterization of uniqueness is not tight
in general. We can easily construct counter-examples when
m = n.

An interesting consequence of our characterization is that
the set of optimizing input distributions for the k-use chan-
nel does not necessarily tensorize. Indeed, from Theorem 2,

X = {P)”}@k + ker (VKV(%:)} ) Rﬁfk.

2) Proof of Theorem 2: Note W®F is essentially a dis-
crete memoryless channel over X* and P)"}@k is one of
its capacity-achieving distributions. The only thing left is
to find ™. Since ") = H(Y*|IX* = iyip--iy) =
Sy HYw| Xy = i) = Yj_, 7iy, thus (0N s the
row vector with components {rEfZ??_”ik,il,ig, iy € XY,
where the indices are in lexicographical order. For example,
we have (1) = (ry 411,71 4+72, -+ 7147 | TobTL, T+
To, o To+Tm | oo | P+ 71, T T2y P + 1), O

As a corollary of the above, we can show the following.

Corollary 16 (Weakly symmetric channel). For a weakly

symmetric channel W (in fact for any channel with con-

stant H(Y|X)), if we have a P% for it, then the set of

capacity-achieving distribution for W®F is P = {P;'}®k +
. . k

i (R™)EL @ ker(W) @ (R™)®—} A RT" .

3 A channel is said to be weakly symmetric if every column is a permutation
of every other column and all row sums are the same.

2341

3) Proof of Claim 3: Consider the noisy typewriter channel
in (2). It can be verified that P% = c1{(1/2,0,1/2,0)7,
(0,1/2,0,1/2)T}, where cl denotes convex hull. The choice
P = (1/4,1/4,1/4,1/4)7 is capacity-achieving, and the
null space ker(W) = span{(—1,1,—1,1)T}. Since W is
symmetric, by Corollary 14, we have the null space of W@ W
as ker(W ® W) = span{v} ® R* + R* ® span{v}, here
vi=(—1,1,-1,1)". Note R* = span{v, uy, us, us} for u; =
(1,0,0,0)7, us = (0,1,0,0)7, and uz = (0,0,1,0)". Then
we have ker(WQ@W) = span({v®uv, v®u;, u; ®v, Vi € [3]}).
Since P§ ® P§ = {1, any direction in ker(W @ W) is
admissible. Thus dim(P%.) = dim(ker(W ® W)) = 7. In
particular, we have dim(P%,) = 4% — 3. O

C. Counterexamples using superposition codes

Lemma 17. Coup(q, R1, R2) with bounded distance decod-
ing achieves vanishingly small probability of error over the
BSC(p) as long as

Ri+Ry<1—H(p) and Ry <H(q*p)—H(p) (8)

where q * p := q(1 — p) + p(1 — q).

Lemma 18. Csyp(q, R1, R2) with MAP decoding achieves
vanishingly small probability of error over the BEC(p) as long
as

Ri+Ro<1—p

and Ro<(1—p)H(q). (9

1) Proof of Lemma 8: The fact that Csup(g, Ri, R2)
achieves a vanishingly small probability of error follows from
Lemma 18. To show that the probability of error over the
BSC is large, consider the more powerful decoder where Bob
has access to an oracle who reveals the cloud center of the
transmitted codeword. Conditioned on the cloud center (and
hence the cloud subcode), the corresponding subcodebook can
achieve vanishingly small probability of error only if Ry is less
than the input-constrained capacity of the BSC(p) with input
Hamming weight constraint of ng, or (see, e.g., [10, Theorem
3.2]), equal to H(q*p)— H(p). However, (1 — H(p))H (q) >
H(q=p)— H(p) for p and ¢ in (0,1/2). This completes the
proof. O

The proofs of Lemmas 9 and 10 are similar, and we skip
the details.

D. Closing remarks

We have studied general properties of codes and make a
variety of novel observations. While this is only a first step,
we believe that the tools used in this paper would comple-
ment [14], [13] in obtaining a clearer picture of capacity-
achieving codes. In particular, we feel that the linear algebraic
characterization as well as the superposition code ensemble
could be very useful in deriving more general results.
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