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Abstract

We give a unified way of testing and learning finite Markov chains from a single Markovian trajec-
tory, using the idea of k-cover time introduced here. The k-cover time is the expected length of a random
walk to cover every state at least k times. This generalizes the notion of cover time in the literature.
The error metric in the testing and learning problems is the infinity matrix norm between the transition
matrices, as considered by Wolfer and Kontorovich.

Specifically, we show that if we can learn or test discrete distributions using k samples, then we can
learn or test Markov chains using a number of samples equal to the k-cover time of the chain, up to
constant factors. We then derive asymptotic bounds on the k-cover time in terms of the number of states,
minimum stationary probability and the cover time of the chain. Our bounds are tight for reversible
Markov chains and almost tight (up to logarithmic factors) for irreducible ones.

Our results on k-cover time yield sample complexity bounds for a wider range of learning and test-
ing tasks (including learning, uniformity testing, identity testing, closeness testing and their tolerant
versions) over Markov chains, and can be applied to a broader family of Markov chains (irreducible and
reversible ones) than previous results which only applies to ergodic ones.
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1 Introduction

Learning and testing discrete distributions is an active research area (see, e.g., [AB09, BFF+01, CDVV14]
and the references therein). Classical results include Θ(n/ε2) as sample complexity for learning [AB09]
and Θ(

√
n/ε2) as sample complexity for uniformity testing [Pan08]. A number of other learning and testing

problems have been proposed and studied as well, including identity testing, closeness testing and tolerant
learning/testing (see, e.g., the survey by Canonne [Can17]).

We consider these problems when the samples are not i.i.d., but instead generated from a finite Markov chain,
as considered in [DDG17, WK19b, WK20a]. Following [WK19b, WK20a], we use the infinity matrix norm
as the distance measure. The main challenge in the Markovian case is that, since the samples are dependent,
the mixing properties of the chain needs to be taken into consideration.

Consider a Markov chain over discrete state space [n] = {1, 2, ..., n}. Given the initial state X0, one
can generate the Markovian trajectory X1, X2, ..., XT according to the transition probabilities P(Xt =
j|Xt−1 = i) = pij for all t ≥ 1. Denote by M = (pij)i,j∈[n] the transition matrix of this chain. The
Markov chain is irreducible if for all i, j ∈ [n], there exists some t ∈ N such that (M t)ij > 0. For
each irreducible Markov chain, the fundamental theorem of Markov chain guarantees a unique stationary
distribution π = (π1, ..., πn) ∈ ∆n−1, which is entry-wise positive, such that πM = π. Here ∆n−1 , {π :
1Tπ = 1, π ∈ Rn+} is the (n − 1)-dimensional probability simplex. We denote the minimum stationary
probability as π∗ , mini∈[n] πi.

If the chain is reversible in addition to being irreducible, it then satisfies the detailed balance condition:
pijπi = pjiπj ,∀i, j ∈ [n]. If a Markov chain is reversible, then the eigenvalues of its transition matrix
M are all real and can be denoted as λ1 = 1 > λ2 ≥ ... ≥ λn ≥ −1. The spectral gap of this chain
is γ , 1 − λ2, and the absolute spectral gap of this chain is γ∗ , min{1 − |λ2|, 1 − |λn|}. It is well
known that γ∗ characterizes the mixing time tmix of reversible chains via the inequalities Ω(1/γ∗) ≤ tmix ≤
O(ln(1/π∗)/γ∗).

(Uniformly) ergodic chains form a sub-family of irreducible chains that also satisfies the aperiodicity con-
dition. For ergodic chains, the mixing time is similarly characterized by Paulin’s pseudo-spectral gap γps
[Pau15]. This quantity generalizes the absolute spectral gap by suitably reversiblizing the chain. Formally,
γps , maxk≥1

1
kγ((MT )kMk).

Given a Markovian trajectoryXm
0 = (X0, . . . , Xm) from some unknown Markov chainM up to timem, we

are interested in learning M from this trajectory. A popular choice in the literature is the plug-in estimator
M̂ defined as M̂ = (Nij/m)i,j∈[n], where Nij is the the number of transitions from state i to state j in this
trajectory. The quality of any estimator M̂ then depends on its closeness to M under some distance measure
d(M,M̂).

Besides learning, there are also testing tasks including uniformity testing, identity testing and closeness
testing. We list the following four natural learning and testing tasks for Markov chains here.

1. (ε, δ)-Learning : Given small constants δ, ε ∈ (0, 1), and a Markovian trajectory Xm
1 from some

unknown chain M , an (ε, δ)-learning algorithm A outputs a transition matrix M̂ = A(Xm
1 , n) such

that d(M̂,M) ≤ ε with probability ≥ 1− δ.

2. (ε, δ)-Uniformity Testing : Given small constants δ, ε ∈ (0, 1), and a Markovian trajectory Xm
1

from some unknown chain M , an (ε, δ)-uniformity testing algorithm A(Xm
1 ,M, n) outputs “Yes” if

M = Mu and “No” if d(M,Mu) ≥ ε with probability ≥ 1 − δ. Here Mu = 1
n1

T1 yields exactly
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uniform i.i.d samples.

3. (ε, δ)-Identity Testing : Given small constants δ, ε ∈ (0, 1), a known reference Markov chain M
and a Markovian trajectory Xm

1 from another unknown chain M ′, an (ε, δ)-identity testing algorithm
A(Xm

1 ,M, n) outputs “Yes” if M = M ′ and “No” if d(M,M ′) ≥ ε with probability ≥ 1− δ.

4. (ε, δ)-Closeness Testing : Given small constants δ, ε ∈ (0, 1), two Markovian trajectories Xm
1 , Y

m
1

from unknown Markov chainsM,M ′ respectively, an (ε, δ)-closeness testing algorithmA(Xm
1 , Y

m
1 , n)

outputs “Yes” if M = M ′ and “No” if d(M,M ′) ≥ ε with probability ≥ 1− δ.

For testing problems, there are also tolerant versions: Given 0 < ε1 < ε2 < 1, decide whether d(M,M ′) ≤
ε1 or d(M,M ′) ≥ ε2. These tolerant testing tasks are in general harder than vanilla testing tasks. Details
about tolerant testing will be covered in Section 3.

Previous works considered various distance measures d(M,M̂): matrix norms, Hellinger-based distance
and the minimax prediction risk. We now discuss these distance measures.

• Infinity Matrix Norm: Learning Markov chains under the infinity matrix norm ‖M̂−M‖∞ is studied
in [WK19b].1 It is shown that a certain estimator (not the empirical one) achieves near-optimal sample
complexity Θ̃ (1/γpsπ∗ + n/π∗ε2) for learning ergodic chains. And later, they considered identity testing
ergodic chains under this distance, showing that one can achieve near optimal sample complexity
Θ̃ (1/γpsπ∗ +

√
n/π∗ε2) [WK20a]. Recently, this distance is also studied in [WK20b] for learning a

Markov chain with a countable state space.

• A Hellinger-based Distance: The distance d√(M̂,M) was proposed to study identity testing prob-
lem of Markov chains in [DDG17, CB19]. However, identity testing under this distance only works
for symmetric Markov chains, which is a quite restricted sub-family of Markov chains. Also, this
distance measure fails to satisfy the triangle inequality and is not a metric [DDG17]. Thus we do not
study learning and testing problems under this distance.

• Minimax Prediction Risk: The problem of learning Markov chains under some smooth f -divergence
based minimax prediction risk ρ(M̂,M) was studied in [HOP18]. They deduced the near-optimality
of the (smoothed) plug-in estimator for achieving low risk, so long as mini,j pij > 0. This is a fairly
strong restriction on Markov chains. Hence, we are not interested in this measure either.

As the above discussion shows, both the Hellinger-based distance and the one based on the minimax pop-
ulation risk put stringent conditions on the families of Markov chains we can study. Thus, we stick with
using matrix norms as the distance measure. Moreover, we find the infinity matrix norm ‖·‖∞ natural for
its intimate connection to learning and testing with i.i.d. samples, as shown previously in [WK19b, WK20a,
WK20b]. Formally, we have

‖M −M ′‖∞ = max
i∈[n]

∑
j∈[n]

|pij − p′ij |

 = max
i∈[n]

2dTV(pi,p
′
i).

Here pi = (pi1, pi2, ..., pin) denotes the outgoing transition probabilities from state i, and dTV denotes the
total variation distance.

1Note that the infinity matrix norm ‖·‖∞ is equivalent to the metric |||·||| in [WK19b].
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In this paper, we shed light on the connection between learning and testing problems for Markov chains and
those with i.i.d. samples. Specifically, we prove that the sample complexity of learning and testing Markov
chains is controlled by a combinatorial quantity t(k)

cov of the unknown chain which we dub as the k-cover time.
Informally speaking, we show that if the sample complexity of (ε, δ)-learning/testing discrete distributions
under dTV is k(ε, δ), then the sample complexity of learning and testing Markov chains under ‖·‖∞ is upper
bounded by tk(ε,δ′)

cov of the unknown chain. This gives an essentially blackbox reduction of Markov chain
problems to their i.i.d. counterparts.

Our argument works for a large family of learning and testing tasks including learning, uniformity test-
ing, identity testing, closeness testing and related tolerant versions of testing problems. Our main results
(Theorem 6 and Theorem 9) generalize previous Markov chain learning [WK19b] and Markov chain Iden-
tity Testing [WK20a] results to every similarly-defined learning and testing problems on Markov chains.
Further, previous results [WK19b, WK20a] only hold for ergodic chains, while our results hold more gener-
ally for irreducible chains — arguably the most general family of chains having a finite sample complexity
guarantee.

Technically, our work differs from [WK20a] (that also gives a blackbox reduction of Identity Testing to
i.i.d. samples) in that they bound the number of visits using a union bound and an ad hoc decomposition of
the trajectory, while we employ sophisticated tools such as Ray–Knight isomorphism theorem to bound the
k-cover time. Also, when reducing Markov chain problems to their i.i.d. counterparts, we relate the finite
trajectory to the infinite trajectory via the concept of k-cover time. This avoids the ad hoc decomposition of
[WK20a] or the matrix Freedman inequality used in [WK19b], while generalizing the results to irreducible
chains.

Towards our main results, we also prove tight bounds for the k-cover time in terms of k, minimum stationary
probability and the cover time. For reversible chains, our bounds t(k)

cov = Θ(k/π∗ + tcov) are tight up to
constant factors (Lemma 9 and Theorem 5). For irreducible chains, our upper bound t(k)

cov = Õ(k/π∗ + tcov)
is tight up to a factor logarithmic in the number of states (Lemma 9 and Theorem 7).

2 Preliminaries

In this section, we review some related definitions, lemmas and theorems which will be useful in our anal-
ysis. Specifically, we review some backgrounds on testing and learning discrete distributions as well as the
Ray–Knight’s isomorphism theorem.

2.1 Testing and Learning Discrete Distributions

Testing and learning discrete distributions with i.i.d. samples is a well studied topic, especially under the
total variation distance. The following theorem summarizes some results in this area, including sample
complexity bounds for learning, identity testing, closeness testing and so on.

Theorem 1 ((ε, δ)-learning/testing discrete distributions). The sample complexity of learning and testing
problems given i.i.d. samples over state space [n] are as follows.

1. (ε, δ)-learning ([AB09]): The sample complexity is Θδ(n/ε
2).

2. (ε, δ)-uniform testing ([Pan08]): The sample complexity is Θδ(
√
n/ε2).
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3. (ε, δ)-identity testing ([BFF+01, VV17]): The sample complexity is Θδ(
√
n/ε2).

4. (ε, δ)-closeness testing ([CDVV14], Theorem 1): The sample complexity is Θδ(max{
√
n/ε2, n2/3/ε4/3}).

5. (ε1, ε2, δ)-tolerant-uniformity testing ([VV11], Theorem 3 and 4): The sample complexity isOδ(n/ lnn(ε2−
ε1)2).

6. (ε1, ε2, δ)-tolerant-identity testing ([VV11], Theorem 3 and 4): The sample complexity isOδ(n/ lnn(ε2−
ε1)2).

7. (ε1, ε2, δ)-tolerant-closeness testing ([VV11], Theorem 3 and 4): The sample complexity isOδ(n/ lnn(ε2−
ε1)2).

8. (ε/2
√
n, ε, δ)-tolerant-uniform testing ([GR11], rephrased): The sample complexity is Oδ(

√
n/ε4).

9. (ε3/300
√
n lnn, ε, δ)-tolerant-identity testing ([BFF+01], Theorem 24): The sample complexity is

Oδ(
√
n lnn/ε6).

Here Θδ hides the logarithmic term in δ.

In the next section, we will show how Markov chain problems are related to i.i.d. sample problems via the
k-cover time.

2.2 Ray–Knight’s Isomorphism Theorem

Given an infinite Markovian trajectory X∞1 and t ≥ 1, let {NX
i (t),∀i ∈ [n]} be the counting measure of

states [n] appearing in the subtrajectory Xt
1 up to time t, and we denote the empirical distribution induced

by the trajectory as π̂(t) = (N1(t)/t, ..., Nn(t)/t). We define the random cover time as τXcov , inf{t : ∀i ∈
[n], NX

i (t) > 0}, the first time to have visited every state. For clearer illustration, we omit the superscript
X in NX

i (t) and τXcov in the rest of the paper when it does not incur ambiguity. The expectation of τcov given
a fixed initial state i0 is E[τcov|X0 = i0] and the expected cover time is the maximum over the initial state,
tcov , maxi0∈[n] E[τcov|X0 = i0].

The random hitting time is the first time when a certain state gets hit by the random walk. Specifically, for
some j ∈ [n] the random hitting time is τhit(j) , inf{t : Nj(t) > 0}. The hitting time is then defined as
thit = maxi0,j∈[n] E[τhit(j)|X0 = i0].

Any reversible Markov chain corresponds to the canonical discrete time random walk on an edge-weighted
undirected graph G = (V,E,w), and vice versa [AF95, §3.2]. We also think of G as an electrical network,
with edge weight wij being the conductance of a resistor between nodes i and j (i.e. having resistance
1/wij). Let ci =

∑
j∈V wij be the degree of node i. The discrete time random walk has transition probability

pij = wij/ci. Given any two nodes i, j, the effective resistance between i, j over this network is denoted by
rij ; see [LPW17, Chapter 9] for more information about random walks and electrical networks. Finally, let
c =

∑
i∈V ci be the total conductance.

The continuous-time Markov chain can be constructed from a discrete Markov chain by setting an expo-
nential clock τexp ∼ Exp(1) to determine the time interval between jumps. After fixing the starting state as
i0 ∈ [n], the local time for state i ∈ [n] and time t is

Lit ,
1

ci

∫ t

0
1{Xs=i}ds ,
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and the inverse local time (of i0) at time t is

τinv(t) , inf{s : Li0s > t} .

Following [DLP11, Din14], we will analyze the (k-) cover time via the local time process
{
Liτinv(t) : i ∈ [n]

}
.

We now recall the generalized second Ray-Knight isomorphism theorem of [EKM+00] (see also [MR06,
Theorem 8.2.2]).

Theorem 2 (Generalized Second Ray-Knight isomorphism theorem). Fix some state i0 ∈ [n] and denote
T0 , τhit(i0). We let

Γi0(i, j) = E[LjT0 |X0 = i] =
1

2
(ri0i + ri0j − rij)

and let η = {ηi : i ∈ [n]} be a mean zero Gaussian process with covariance Γi0(i, j). Let Pi0 and Pη be the

measure on the process
{
Liτinv(t)

}
and {ηx}, respectively. Then under the measure Pi0 × Pη, for any t > 0,

we have the following equality in distribution:{
Liτinv(t) +

1

2
η2
i : i ∈ [n]

}
d.
=

{
1

2
(ηi +

√
2t)2 : i ∈ [n]

}
.

This powerful isomorphism theorem was used by [DLP11] to prove the “blanket time conjecture” of [WZ96].
And the Gaussian process described above is called the Gaussian free field in the literature. We cite the main
theorem of [DLP11] for future reference.

Theorem 3 (Constant-factor approximation of cover time). For the random walk on reversible Markov
chains, fix some i0 ∈ [n] as starting state, and let η = {ηi : i ∈ [n]} be the Gaussian process described in
Theorem 2. Then we have

tcov � c
(
Emax

i
ηi

)2

,

where c =
∑

i ci is the total conductance.

The k-cover time naturally generalizes the cover time, and underpins our arguments for sample complexity
bounds. Roughly speaking, it measures the expected length of the Markovian trajectory to ensure covering
each state k times.

Definition 1 (k-cover time). For any k ∈ N+, the random k-cover time τ (k)
cov is the first time when every

state in [n] has been visited k times, i.e., τ (k)
cov , inf{t : ∀i ∈ [n], Ni(t) ≥ k}. And the k-cover time is

t
(k)
cov , maxi0∈[n] E[τ

(k)
cov |X0 = i0].

Note that the k-cover time coincides with the cover time when k = 1. And we refer the readers to [LPW17,
AF95] for a wonderful exposition of techniques and results on Markov chains.

The rest of this paper is structured as follows. In Section 3, we connect Markov chain learning/testing to
k-cover time. In Section 4, we bound the k-cover time of reversible chains via the isomorphism theorem,
and discuss its implications on testing and learning. In Section 5, we bound the k-cover time of irreducible
chains, discuss its consequences and end with several open problems.
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3 Learning and Testing Markov Chains via k-cover Time

In this section, we will see how k-cover time is closely related to Markov chain learning and testing prob-
lems. In the following, we argue that if k(n, ε, δ) i.i.d. samples are enough to (ε, δ)-learn/test n-state discrete
distributions under total variation distance, then tk(n,ε,O(δ/n))

cov samples are sufficient to learn/test the Markov
chain under infinity matrix norm. We first prove the following simple lemma.

Lemma 1 (Exponential decay lemma). For random walk on irreducible chains, for any k,m ∈ N+, and
any initial distribution q, we have P(τ

(k)
cov ≥ emt(k)

cov) ≤ e−m.

Proof. Consider τ (k)
cov with any fixed starting state X0 ∼ q, we have by Markov’s inequality and linearity of

expectation that
P(τ

(k)
cov ≥ et(k)

cov) ≤ P(τ
(k)
cov ≥ eE[τ

(k)
cov |X0]) ≤ 1/e. (1)

Note that this inequality holds for any initial distribution of starting state q. We then bound P(τ
(k)
cov ≤

emt
(k)
cov) ≥ e−m by induction.

First, we consider the first two sub-trajectories of the Markov chain, each of length l , et
(k)
cov, i.e., the chain

X l
1 and X2l

l+1. Denote the event E1 , {X l
1 covers the state space k times}, and E2 , {X2l

l+1 covers the
state space k times}. Suppose X0 is drawn from q ∈ ∆n−1, then according to Eq. (1), we have P(Ec1) =

P(τ
(k)
cov ≥ et(k)

cov) ≤ 1/e. Denote the distribution of Xl conditioned on Ec1 as q′, and τ (k)′
cov as the k-cover time

of X∞l+1, then we have P(Ec2|Ec1) = P(τ
(k)′
cov ≥ et(k)

cov|τ (k)
cov ≥ et(k)

cov) = P(τ
(k)′
cov ≥ et(k)

cov|Xl ∼ q′) ≤ 1/e. Here
we used the fact that E1 is determined by X l

1; while due to Markovian property, E2 do not depend on X l−1
1 .

The above reasoning gives P(Ec1∩Ec2) = P(Ec1)P(Ec2|Ec1) ≤ e−2. Similarly, we can deduce that P(∩i∈[m]E
c
i ) ≤

e−m. But the event E , {Xml
1 covers the state space k times} includes the event ∪i∈[m]Ei, thus P(Ec) ≤

P(∩i∈[m]E
c
i ) ≤ e−m. This proves the lemma.

3.1 Learning Markov Chains

Given any (ε, δ)-learner L(Y m
1 , n) for discrete distributions that outputs p̂ with i.i.d. samples Y m

1 from
p ∈ ∆n−1, we consider the following learning algorithm for Markov chains. Here k(n, ε, δ) is the sample
complexity of (ε, δ)-learn a discrete distribution using i.i.d. samples.

Then we have the following lemma about the sample complexity of learning Markov chains.

Lemma 2 (k-cover time and learning Markov chain). If we have a (ε, δ)-learner for n-state distribution
with sample complexity k(n, ε, δ), then we can (ε, δ)-learning the chain M using Oδ(t

k(n,ε,δ/2n)
cov ) samples.

Here Oδ hides logarithmic factors in δ.

Proof. Since we have P(τ
(k)
cov ≥ emt

(k)
cov) ≤ e−m according to Lemma 1, then by taking m = ln 2

δ , we have

P(τ
(k)
cov ≥ et

(k)
cov ln 2

δ ) ≤ δ
2 . Thus, for a length l = et

k(n,ε,δ/2n)
cov ln 2

δ trajectory, we will have k(n, ε, δ/2n)
samples for each states in [n] with probability≥ 1− δ/2. We consider the infinite chain X∞1 , and define the
event E = {Ni(l) ≥ k(n, ε, δ/2n)}, Ei = { first k samples for state i from X∞1 yields dTV(p̂i,pi) ≤ ε}.
Then P(E) ≥ 1− δ/2, and P(Ec) ≤ δ/2; also we have P(Ei) ≥ 1− δ/2n, and P(Eci ) ≤ δ/2n, due to the
Markov property and the guarantee of the discrete distribution learner L.
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Algorithm 1: LEARNCHAIN

Input: a Markovian trajectory Xm
1 , parameters n, ε, δ

Output: a candidate Markov chain M̂
1 for i← 1, 2, ..., n do
2 if NX

i (m) ≤ k(n, ε, δ/2n) then
3 p̂i ← 1

n1
4 else
5 Let Yi,1, Yi,2, ..., Yi,k(n,ε,δ/2n) be the first k(n, ε, δ/2n) succeeding states of state i in Xm

1

6 p̂i ← L((Yi,1, ..., Yi,k(n,ε,δ/2n)), n)

7 end
8 end
9 return M̂ ← (p̂1, ..., p̂n)

This gives that P(E ∩ E1... ∩ En) = 1− P(Ec ∪ Ec1... ∪ Ecn). But by union bound P(Ec ∪ Ec1... ∪ Ecn) ≤
P(Ec) +

∑n
i=1 P(Eci ) ≤ δ. And E ∪ E1... ∪ En implies that we have for all i ∈ [n], dTV(p̂i,pi) ≤ ε,

which guarantees ‖M̂ −M‖∞ = maxi∈[n] dTV(p̂i,pi) ≤ ε. Thus, with probability ≥ 1 − δ, we will have

both τ (k)
cov ≤ et(k)

cov ln 2
δ and ‖M̂ −M‖∞ ≤ ε. Therefore, we can (ε, δ)-learn the chain using Oδ(t

k(n,ε,δ/2n)
cov )

samples.

3.2 Identity Testing of Markov Chains

We now consider the task of identity testing of Markov chains. Given any (ε, δ)-identity-tester T (Y m
1 , n,p)

for discrete distributions that outputs “Yes” if p = p′ and “No” if dTV(p,p′) ≥ ε, we consider the following
identity testing algorithm for Markov chains. Here k(n, ε, δ) is the sample complexity of (ε, δ)-identity-test
a discrete distribution using i.i.d. samples.

Algorithm 2: IDTESTCHAIN

Input: a Markovian trajectory Xm
1 , parameters n, ε, δ, a reference chain M

Output: “Yes” if M = M ′, “No” if ‖M −M ′‖∞ ≥ ε
1 for i← 1, 2, ..., n do
2 if NX

i (m) ≤ k(n, ε, δ/2n) then
3 return “No”
4 else
5 Let Yi,1, Yi,2, ..., Yi,k(n,ε,δ/2n) be the first k(n, ε, δ/2n) succeeding states of state i in Xm

1

6 if T ((Yi,1, ..., Yi,k(n,ε,δ/2n)), n,pi) = “No” then
7 return “No”
8 end
9 end

10 end
11 return “Yes”

Similarly, we have the following lemma about the sample complexity of identity-testing Markov chains.

Lemma 3 (k-cover time and identity-testing Markov chain). If we have a (ε, δ)-identity-tester for n-state
distribution with sample complexity k(n, ε, δ), then we can (ε, δ)-identity-testing the chain M against un-
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known chain M ′ using Oδ(t
k(n,ε,δ/2n)
cov (M)) samples. Here Oδ hides logarithmic factors in δ, and we use

t
(k)
cov(M) to specify the k-cover time of M instead of M ′.

Proof. We consider two cases (i) M = M ′ and (ii) ‖M −M ′‖∞ ≥ ε as follows. Similarly, we consider
the infinite chain X∞1 , and denote E = {Ni(l) ≥ k(n, ε, δ/2n)}, Ei = { the first k samples for state i from
X∞1 yields “No” during the test }.

Case 1. M = M ′.

Due to Lemma 1, for a length l = et
k(n,ε,δ/2n)
cov ln 2

δ trajectory, we will have k(n, ε, δ/2n) samples for each
state with probability ≥ 1 − δ/2, thus P(E) ≥ 1 − δ/2. Moreover, by Markov property and the guarantee
of the learner, the event Ei happens with probability P(Ei) ≤ δ/2n for any i ∈ [n]. Thus by a union bound,
error events happen with probability P(Ec ∪ E1... ∪ En) ≤ δ. And with probability ≥ 1 − δ, the identity
tester will answer “Yes”.

Case 2. ‖M −M ′‖∞ ≥ ε.

The only case it makes fault by answering “Yes” is when it do not pass Line 2 and Line 6 for all states,
which means it will have enough samples for testing each state, and the i.i.d. tester T answers “Yes” for all
sub-tests {pi, ∀i ∈ [n]}. Since ‖M −M ′‖∞ ≥ ε implies there exists i∗ ∈ [n] such that dTV(pi∗ ,p

′
i∗) ≥ ε,

and this guarantees that the sub-test for i∗ will return “No” with probability P(Ei∗) ≥ 1 − δ/2n. Thus the
probability of the whole process answering “Yes” is P(E ∩ Ec1... ∩ Ecn) ≤ P(Eci∗) ≤ δ/2n.

To sum up, for both cases, the identity tester will give the correct answer with probability ≥ 1 − δ. This
proves the lemma.

3.3 Closeness Testing of Markov Chains

We now considering the task of closeness testing of Markov chains. Given any (ε, δ)-closeness-tester
T (Y m

1 , Y m′
1 , n) for discrete distributions that outputs “Yes” if p = p′ and “No” if dTV(p,p′) ≥ ε, we

consider the following identity testing algorithm for Markov chains, where k(n, ε, δ) is the sample com-
plexity of (ε, δ)-closeness-test a discrete distribution using i.i.d. samples.

We then have the following lemma connecting k-cover time to the sample complexity of closeness-testing
Markov chains.

Lemma 4 (k-cover time and closeness-testing Markov chain). If we have a (ε, δ)-closeness-tester for n-
state distribution with sample complexity k(n, ε, δ), then we can (ε, δ)-closeness-testing the unknown chains
M,M ′ using Oδ(min{tk(n,ε,δ/4n)

cov (M), t
k(n,ε,δ/4n)
cov (M ′)}) samples. Here Oδ hides logarithmic factors in δ.

Proof. Consider the cases (i) M = M ′ and (ii) ‖M −M ′‖∞ ≥ ε as follows. Consider the infinite chain
X∞1 , and denote EX = {NX

i (l) ≥ k(n, ε, δ/4n)}, EY = {NY
i (l) ≥ k(n, ε, δ/4n)}, Ei = { the first k

samples for state i from X∞1 yields “No” during the test }.

Case 1. M = M ′.

Due to Lemma 1, for a length l = et
k(n,ε,δ/4n)
cov ln 2

δ trajectory, we will have k(n, ε, δ/4n) samples for each
state with probability P(EX) ≥ 1− δ/4 and P(EY ) ≥ 1− δ/4. By a union bound over the two chains, the
probability of passing the condition in Line 2 of Algorithm 2 is ≥ 1 − δ/2. Then we have P(Ei) ≤ δ/4n,
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Algorithm 3: CLOSETESTCHAIN

Input: two Markovian trajectories Xm
1 , Xm′

1 , parameters n, ε, δ
Output: “Yes” if M = M ′, “No” if ‖M −M ′‖∞ ≥ ε

1 for i← 1, 2, ..., n do
2 if NX

i (m) ≤ k(n, ε, δ/2n) or NX′
i (m) ≤ k(n, ε, δ/2n) then

3 return “No”
4 else
5 Let Yi,1, Yi,2, ..., Yi,k(n,ε,δ/2n) be the first k(n, ε, δ/2n) succeeding states of state i in Xm

1

6 Let Y ′i,1, Y
′
i,2, ..., Y

′
i,k(n,ε,δ/2n) be the first k(n, ε, δ/2n) succeeding states of state i in Xm′

1

7 if T ((Yi,1, Yi,2, ..., Yi,k(n,ε,δ/2n)), (Y
′
i,1, ..., Y

′
i,k(n,ε,δ/2n)), n) = “No” then

8 return “No”
9 end

10 end
11 end
12 return “Yes”

and error probability P(EcX ∪ EcY ∪ E1... ∪ En) ≤ 3δ/4. Thus with probability ≥ 1− δ the identity tester
will answer “Yes”.

Case 2. ‖M −M ′‖∞ ≥ ε.

The only case it answers “Yes” is when it do not pass Line 2 and Line 7 in Algorithm 3 for all states,
which means it will have enough samples for testing each state, and the i.i.d. tester T answers “Yes” for all
sub-tests. Then essentially the same argument in Lemma 3 will give that P(Ei∗) ≥ 1 − δ/4n for some i∗.
Therefore, the probability of answering “Yes” is P(EX ∩EY ∩Ec1...∩Ecn) ≤ P(Eci∗) ≤ δ/4n. This proves
the lemma.

3.4 Tolerant Testing and More

We now considering the task of tolerant identity/closeness testing of Markov chains. Given any (ε1, ε2, δ)-
tolerant-identity-tester T (Xm

1 , n,p) for discrete distributions that outputs “Yes” if dTV(p,p′) ≤ ε1 and
“No” if dTV(p,p′) ≥ ε2, we can construct similar tolerant tester for Markov chains as above. We have the
following propositions for tolerant testing problems.

Lemma 5 (k-cover time and tolerant-identity-testing Markov chain). If we have a (ε1, ε2, δ)-tolerant-
identity-tester for n-state distribution with sample complexity k(n, ε1, ε2, δ), then we can (ε1, ε2, δ)-tolerant-
identity-testing M against the unknown chains M using

Oδ(max{tk(n,ε1,ε2,δ/2n)
cov (M), t

k(n,ε1,ε2,δ/2n)
cov (M ′)})

samples.

Lemma 6 (k-cover Time and Tolerant-closeness-testing Markov Chain). If we have a (ε1, ε2, δ)-tolerant-
closeness-tester for n-state distribution with sample complexity k(n, ε1, ε2, δ), then we can (ε1, ε2, δ)-tolerant-
closeness-testing the unknown chains M,M ′ using

Oδ(max{tk(n,ε1,ε2,δ/4n)
cov (M), t

k(n,ε1,ε2,δ/4n)
cov (M ′)})

samples.

10



Besides these, we also have the problem of testing with respect to uniform distributions. We have the
following problem for the Markov chain scenario. Given a trajectory Xm

1 from M ′, can we test whether it
comes from uniform distribution M = 1

n11
T , or it comes from M ′ such that ‖M ′ −M‖∞ ≥ ε. Then we

have the following propositions.

Lemma 7 (k-cover Time and Uniform-testing Markov Chain). If we have a (ε, δ)-uniform-tester for n-state
distribution with sample complexity k(n, ε, δ), then we can (ε, δ)-uniform-testing against unknown chainM ′

using Oδ(t
k(n,ε,δ/2n)
cov (M)) samples, where M = 1

n11
T . We remark that it does not depend on the k-cover

time of the unknown chain.

Lemma 8 (k-cover Time and Tolerant-uniform-testing Markov Chain). If we have a (ε1, ε2, δ)-tolerant-
uniform-tester for n-state distribution with sample complexity k(n, ε1, ε2, δ), then we can (ε1, ε2, δ)-tolerant-
uniform-testing against the unknown chains M ′ using Oδ(t

k(n,ε1,ε2,δ/2n)
cov (M ′)) samples.

As the above arguments show, k-cover time establishes a universal connection between the testing and
learning problems of Markov chains and discrete distributions. In a sense, the Markov chain learning/testing
problems can be reduced to those over discrete distributions via k-cover time. Thus an interesting question
would be to bound the k-cover time, in terms of basic quantities like n, π∗ and tcov associated with a Markov
chain. In the next section, we will prove that t(k)

cov = Θ(tcov + k/π∗) for reversible chains and t
(k)
cov =

Θ̃(tcov + k/π∗) for irreducible chains. These bounds on k-cover time then gives nice sample complexity
bounds on learning/testing Markov chain problems in an unified version.

4 The k-cover Time of Reversible Chains

In this section, we focus on bounding the k-cover time of reversible Markov chains with respect to the
basic quantities n, π∗ and tcov. First, we prove an universal lower bound of k-cover time that applies to all
irreducible Markov chains. Then we prove a tight upper bound on t(k)

cov for reversible Markov chains.

4.1 Lower Bound for General Irreducible Chains

We have the following lower bound on t(k)
cov for all irreducible Markov chains. To prove the lemma, we will

use the connection to return time. For some state i ∈ [n], the return time τret(i) is the first time a Markov
chain starting at i returns to i. And the expected return time is tret(i) = E[τret|X0 = i]. It is standard result
that tret(i) = 1/πi.

Lemma 9 (lower bound on k-cover time). For any irreducible Markov chain with minimum stationary
probability π∗ and cover time tcov, we have t(k)

cov = Ω(k/π∗ + tcov).

Proof. Clearly we have t(k)
cov ≥ tcov for all k ≥ 1. We will show tcov ≥ (k − 1)/π∗, which proves the

lemma. Denote i∗ = arg mini∈[n] πi and the pth time of hitting state i∗ as τ (p)
hit (i∗), then it’s clear that

τ
(k)
cov ≥ τ

(k)
hit (i∗) for any chain. Thus E[τ

(k)
cov |X0 = i0] ≥ E[τ

(k)
hit (i∗)|X0 = i0]. Note that τ (k)

hit (i∗) =

11



τhit(i∗) +
∑k

j=2

(
τ

(j)
hit (i∗)− τ (j−1)

hit (i∗)
)
. Then we have

E[τ
(k)
hit (i∗)|X0 = i0] =E

[
τhit(i∗) +

k∑
j=2

(
τ

(j)
hit (i∗)− τ (j−1)

hit (i∗)
)
|X0 = i0

]
=E[τhit(i∗)|X0 = i0] +

k∑
j=2

E
[
τ

(j)
hit (i∗)− τ (j−1)

hit (i∗)|X0 = i0
]

≥
k∑
j=2

E
[
τ

(j)
hit (i∗)− τ (j−1)

hit (i∗)|X0 = i0
]

(2)

Note that due to the Markov property, τ (j)
hit (i∗) − τ

(j−1)
hit (i∗) in fact has the same distribution as τret(i∗).

This certifies that E
[
τ

(j)
hit (i∗) − τ

(j−1)
hit (i∗)|X0 = i0

]
= (k − 1)tret(i∗) = (k − 1)/π∗. Thus, we have

t
(k)
cov ≥ (k − 1)/π∗ and the lemma is proved.

4.2 Upper Bound for Reversible Chains

Now we prove a matching upper bound for reversible Markov chains using the Ray–Knight’s isomorphism
theorem. The following lemma on the concentration of the supremum of a Gaussian process is useful
[DLP11].

Lemma 10 (Gaussian supremum lemma). Consider a Gaussian process {ηi : i ∈ [n]} and define σ =

supi∈[n]

√
E η2

i . Then for α > 0, we have

P

(∣∣∣∣∣sup
i∈[n]

ηi − E sup
i∈[n]

ηi

∣∣∣∣∣ > α

)
≤ 2 exp(−α2/2σ2).

Also, we will use the concentration of the inverse local time [Din14, Lemma 2.1].

Lemma 11 (Inverse local time lemma). Let X be a continuous time random walk on an electrical network,
and denote c =

∑
i,j∈[n]wij be the total conductance. Fixing any state i0 ∈ [n], let R , maxi,j∈[n] E(ηi −

ηj)
2 and τinv(t) be the inverse local time for i0. Then for any t ≥ 0 and λ ≥ 1,

P
(∣∣∣τinv(t)− c · t

∣∣∣ ≥ 1

2
(
√
λRt+ λR) · c

)
≤ 6 exp(−λ/16).

Armed with this lemma, then we can prove an upper bound on the k-cover time of reversible Markov chains
for the continuous-time scenario as follows.

Theorem 4 (k-cover time of continuous-time reversible chains). For the continuous-time random walk on
reversible chains, we have t(k)

cov = O(k/π∗ + tcov).

Proof. We fix any i0 ∈ [n], and let τinv(t) be the corresponding inverse local time for i0. Note by τinv(t),
with high probability, we should have accumulated Ω(t) local time at each node. To show this, for some

12



small constant δ ∈ (0, 1), consider the bad event E =
{

infi L
i
τinv(t) ≤ δt

}
. Let {ηi : i ∈ [n]} be the

Gaussian process in Theorem 2, and let Λ = E supi ηi. By the isomorphism theorem,

{
Liτinv(t) +

1

2
η2
i : i ∈ [n]

}
d.
=

{
1

2
(η′i +

√
2t)2 : i ∈ [n]

}
.

Thus we have

P
(

inf
i
Liτinv(t) +

1

2
η2
i ≤ (1 + δ)t/2

)
= P

(
inf
i

1

2
(η′i +

√
2t)2 ≤ (1 + δ)t/2

)
.

And we also have

P
(

inf
i
Liτinv(t) +

1

2
η2
i ≤ (1 + δ)t/2

)
≥ P

(
inf
i
Liτinv(t) + sup

i

1

2
η2
i ≤ (1 + δ)t/2

)
.

Moreover, suppose infi L
i
τinv(t) ≤ δt and infi L

i
τinv(t) + supi

1
2η

2
i ≥ (1 + δ)t/2, then we must have

sup
i

1

2
η2
i ≥ (1 + δ)t/2− inf

i
Liτinv(t) ≥ (1− δ)t/2.

This shows that

P(E) ≤ P
(

sup
i

1

2
η2
i ≥ (1− δ)t/2 or inf

i
Liτinv(t) + sup

i

1

2
η2
i ≤ (1 + δ)t/2

)
.

By union bound and previous inequalities we have

P(E) ≤ P
(

sup
i

1

2
η2
i ≥ (1− δ)t/2

)
+ P

(
inf
i

1

2
(η′i +

√
2t)2 ≤ (1 + δ)t/2

)
≤ P

(
sup
i
|ηi| ≥

√
(1− δ)t

)
+ P

(
inf
i
η′i ≤

√
(1 + δ)t−

√
2t

) (3)

Here we used the fact that infi |η′i +
√

2t| ≥ infi η
′
i +
√

2t. Note that by symmetry of centered Gaussian
process, we have

P
(

inf
i
η′i ≤

√
(1 + δ)t−

√
2t

)
= P

(
sup
i
η′i ≥

√
2t−

√
(1 + δ)t

)
and

P
(

sup
i
|ηi| ≥

√
(1− δ)t

)
= P

(
sup
i
ηi ≥

√
(1− δ)t or inf

i
ηi ≤ −

√
(1− δ)t

)
≤ P

(
sup
i
ηi ≥

√
(1− δ)t

)
+ P

(
inf
i
ηi ≤ −

√
(1− δ)t

)
= 2P

(
sup
i
ηi ≥

√
(1− δ)t

) (4)

Now by concentration of the supremum of a Gaussian process, we deduce that for t ≥ Λ2/(1− δ),

P(sup
i
ηi ≥

√
(1− δ)t) = P(sup

i
ηi − Λ ≥

√
(1− δ)t− Λ)

≤ P(| sup
i
ηi − Λ| ≥

√
(1− δ)t− Λ)

≤ 2 exp(−(
√

(1− δ)t− Λ)2/2σ2).

(5)
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Similarly, we have for t ≥ Λ2/(
√

2−
√

1 + δ)2,

P(sup
i
η′i ≥

√
2t−

√
(1 + δ)t) = P(sup

i
η′i − Λ ≥

√
2t−

√
(1 + δ)t− Λ)

≤ 2 exp(−(
√

2t−
√

(1 + δ)t− Λ)2/2σ2).
(6)

To this end, we have shown that for δ = 1/2, and t ≥ 8Λ2/(2−
√

3)2 ' 228.6Λ2,

P(E) ≤ 4 exp(−(
√
t−
√

2Λ)2/4σ2) + 2 exp(−((2−
√

3)
√
t−
√

2Λ)2/4σ2)

≤ 6 exp(−((2−
√

3)
√
t−
√

2Λ)2/4σ2)

≤ 6 exp(−(2−
√

3)2t/16σ2)

≤ 6 exp(−t/450σ2)

(7)

Finally, we have shown that P(mini L
i
τinv(t) ≤ t/2) ≤ 6 exp(−t/450σ2) for t ≥ 230Λ2. Now we will use

the concentration of the inverse local time.

P
(∣∣∣τinv(t)− c · t

∣∣∣ ≥ (
√
λRt+ 2λR) · c

)
≤ 6 exp(−λ/4)

Note R = maxi,j∈[n] E(ηi − ηj)2, hence

σ2 = max
j∈[n]

E(ηi0 − ηj)2 ≤ R ≤ max
i,j∈[n]

2E(η2
i + η2

j ) = 4σ2.

Specially, we have

P
(
τinv(t) ≥ ct+ c(2σ

√
λt+ 8λσ2)

)
≤ 6 exp(−λ/4).

Taking λ = t/100σ2 we have

P (τinv(t) ≥ 2ct) ≤ 6 exp(−t/400σ2).

Using union bound, we derive for t ≥ 230Λ2,

P
(
τinv(t) ≥ 2ct or inf

i
Liτinv(t) ≤ t/2

)
≤ 12 exp(−t/450σ2).

But consider when τinv(t) ≤ 2ct and infi L
i
τinv(t) ≥ t/2. This means that by 2ct, we should have covered

state i at least ciLτinv(t) ≥ cit/2 times (in the continuous sense). We let t′ = 2ct ≥ 460cΛ2, then by t′, we
should have covered each state at least π∗t′/4 times. Take t′ ≥ 4k/π∗, then we should have covered each
state k times by t′, which means τ (k)

cov ≤ t′. Thus we have for t′ ≥ max{4k/π∗, 460cΛ2},

P(τ
(k)
cov ≥ t′) ≤ 12 exp(−t′/900cσ2) ≤ 12 exp(−t′/6000cΛ2).

The last step is due to σ2 ≤ 2πΛ2 [DLP11] (Equation 22). To this end, we have

t
(k)
cov = E τ (k)

cov ≤
∫ max{4k/π∗,460cΛ2}

0
1dt′ +

∫ ∞
max{4k/π∗,460cΛ2}

P(τ
(k)
cov ≥ t′)dt′

≤ max{4k/π∗, 460cΛ2}+ 80000cΛ2

≤ 4k/π∗ + 90000cΛ2

(8)

Thanks to Theorem 3, we have tcov = Θ(cΛ2), thus t(k)
cov = O(k/π∗ + tcov) for continuous chains.
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To adapt this result for discrete-time Markov chains, we need to use concentration results for sums of i.i.d.
exponential random variables.

Lemma 12 (Concentration of exponential RVs). Let τ1, τ2, ..., τm be i.i.d. exponential variables from
Exp(1), then the sum of these random variables Sm =

∑m
i=1 τi has the following tail concentration bound

for ε ∈ (0, 1).
P(Sm ≥ (1 + ε)m) ≤ exp(−mε2/4).

Proof. Note that for any t > 0, we have E(etSm) = (1 − t)−m, thus by Markov’s inequality for ε > 0, we
have P(Sm ≥ (1 + ε)m) ≤ exp(−(1 + ε)mt−m ln(1− t)). Taking t = ε/(1 + ε), we have for ε ∈ (0, 1),

P(Sm ≥ (1 + ε)m) ≤ exp(ln(1 + ε)m− εm) ≤ exp(−mε2/4).

We will also use the following lemma proved by [DLP11, Lemma 2.4] using the method of majorizing
measures.

Lemma 13 (Tail bound summing lemma). For random walk over a reversible chain, there exist constant
a, b, u0 > 0, such that for any u ≥ u0, we have 0-∑

i∈[n]

e−uciΛ
2 ≤ ae−bu.

Now we are able to translate the result for continuous-time chains to that for discrete-time chains.

Theorem 5 (k-cover time of discrete-time reversible chains). For discrete-time random walk on reversible
chains, we have t(k)

cov = O(k/π∗ + tcov).

Proof. Fixing any state i0 ∈ [n], let τinv(t) be the inverse local time for state i0 of the continuous-time
Markov chain. By the proof for Theorem 4, we have for t ≥ 230Λ2,

P
(
τinv(t) ≥ 2ct or inf

i
Liτinv(t) ≤ t/2

)
≤ 12 exp(−t/6000Λ2).

This means that w.h.p., we have τinv(t) ≤ 2ct and we have spent continuous time cit/2 at state i. However,
the probability of taking significantly less jumps in the corresponding discrete Markov chain and get cit/2
continuous time is very low. Concretely, we have

P(Liτinv(t) ≥ t/2 | Ni(τinv(t)) ≤ cit/4) ≤ exp(−cit/16).

Denote E = {infi L
i
τinv(t) ≤ δt} and E′ , {infi

1
ci
Ni(τinv(t)) ≤ t/4}, then we have

P(E ∪ E′) = P(E) + P(E′ ∩ Ec).

But note that for event E′ ∩ Ec, we have infi
1
ci
Ni(τinv(t)) ≤ t/4 and infi L

i
τinv(t) ≥ t/2, so there exists

some i1 ∈ [n] that satisfies Ni1(τinv(t)) ≤ ci0t/4, but Li1τinv(t) ≥ t/2. We then use union bound to deduce
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that
P(E′ ∩ Ec) ≤ P(∃i ∈ [n], Ni(τinv(t)) ≤ cit/4 and Liτinv(t) ≥ t/2)

≤
n∑
i=1

P(Ni(τinv(t)) ≤ cit/4 and Liτinv(t) ≥ t/2)

≤
n∑
i=1

P(Liτinv(t) ≥ t/2 | Ni(τinv(t)) ≤ cit/4)

≤
n∑
i=1

exp(−cit/16).

(9)

Now we can use the tail bound summing lemma (Lemma 13) to deduce that for t ≥ t0Λ2 for some constant
t0 > 0,

P(E′ ∩ Ec) ≤ a exp(−bt/Λ2).

Here a, b > 0 are also constants. Similarly, we define bad events Σ , {τinv(t) ≥ 2ct} and Σ′ ,
{N(τinv(t)) ≥ 4ct}. Here N(τinv(t)) =

∑n
i=1Ni(τinv(t)) is the total number of jumps made before stop-

ping. These bad events happen with probability

P(Σ′ ∪ Σ) = P(Σ) + P(Σ′|Σc)P(Σc) ≤ P(Σ) + P(Σ′|Σc).

Conditioned on the random variable τinv(t), the distribution of N(τinv(t)) is Poisson with mean τinv(t)
[Z+18] (Remark 1.2). By tail bounds for Poisson distribution, we have ∀x > 0,

P(N(τinv(t)) ≥ τinv(t) + x | τinv(t) ≤ 2ct) ≤ exp
(
− x2

2(τinv(t) + x)

)
≤ exp

(
− x2

2(2ct+ x)

)
.

When Σc is true, Σ′ impliesN(τinv(t))−τinv(t) ≥ 4ct−2ct = 2ct, which meansN(τinv(t)) ≥ τinv(t)+2ct.
Hence using the tail bound above, we have

P(Σ′|Σc) ≤ P(N(τinv(t)) ≥ τinv(t) + 2ct | τinv(t) ≤ 2ct) ≤ e−ct/2.

Note that Ω(n) = tcov � cΛ2, therefore we have Λ−2 = O(c/n) = o(c). By union bound, the bad
events E ∪ E′ ∪ Σ ∪ Σ′ occurs with probability less than a′ exp(−b′t/Λ2) for t ≥ t′0Λ2 and some constant
a′, b′, t′0 > 0.

However, when no bad event happens, denote t′ := 4ct and let t′ ≥ 16k/π∗, we have for any i ∈ [n],

Ni(τinv(t)) ≥ cit

4
=
cit
′

16c
≥ cik

cπ∗
=
πik

π∗
≥ k.

We also note that N(τinv(t)) ≤ t′, and therefore τ (k)
cov ≤ t′. In conclusion, we have shown that for t′ ≥

max{16k/π∗, 4t
′
0cΛ

2},
P(τ

(k)
cov ≥ t′) ≤ a′ exp(−b′t′/4cΛ2).

These directly yields that t(k)
cov = O(k/π∗ + cΛ2) = O(k/π∗ + tcov).

Specially, this gives the tight asymptotic k-cover time for graph random walk. Some interesting instances
are as follows.
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Example 1 (k-cover time for graph random walks and independent stochastic processes). We have the
following consequences of the theorem above.

1. For k-coupon collector, the k-cover time is t(k)
cov = Θ(kn + n lnn). The same is true for all regular

expanders including the hypercube.

2. For full binary tree, the k-cover time is t(k)
cov = Θ(kn+ n(lnn)2).

3. For cycle and path, the k-cover time is t(k)
cov = Θ(kn+ n2).

4. For non-uniform coupon collector with p = (p1, ..., pn) and p∗ = mini∈[n] pi, the k-cover time is

t
(k)
cov = Θ(k/p∗ + tcov).

However, this only shows that our lower bound is tight for reversible chains. For the general irreducible
chains, the isomorphism theorem does not hold and the above arguments cannot be applied.

4.3 Learning and Testing Reversible Chains

In this section, we will see how the k-cover time bound together with previous results on testing/learning
discrete distributions together yields sample complexity bounds on learning/testing Markov chains. Spe-
cially, we consider Markov chains drawn from the family of chains with cover time upper bounded by tcov
and minimum stationary probability lower bounded by π∗, and we denote this family asMrev(tcov, π∗).

We have the following theorem on testing and learning Markov chains due to theorems and lemmas proved
thus far.

Theorem 6 (Sample complexity bounds for learning/testing reversible chains). For a n-state reversible
Markov chains fromMrev(tcov, π∗), we have the following sample complexity bounds.

1. We can (ε, δ)-learn the chain using Oδ(tcov + n lnn
π∗ε2

) samples;

2. We can (ε, δ)-uniform-test the chain using Oδ(n lnn+
√
n lnn
π∗ε2

) samples;

3. We can (ε, δ)-identity-test the chain using Oδ(tcov +
√
n lnn
π∗ε2

) samples;

4. We can (ε, δ)-closeness-test the chains using Oδ(tcov + lnn
π∗

(n
2/3

ε4/3
+
√
n
ε2

)) samples.

5. We can (ε1, ε2, δ)-tolerant-uniform/identity/closeness-test the chain using Oδ(tcov + n
π∗(ε2−ε1)2

) sam-
ples.

6. We can (ε/2
√
n, ε, δ)-tolerant-uniform-test the chain using Oδ(tcov +

√
n lnn
π∗ε4

) samples.

7. We can (ε3/300
√
n lnn, ε, δ)-tolerant-identity-test the chain using Oδ(tcov +

√
n lnn
π∗ε6

) samples.

Proof. This is a direct application of Theorem 1, Theorem 4 and Lemma 2, Lemma 3, Lemma 4. For exam-
ple, the sample complexity of learning Markov chainM isOδ(t

k(n,ε,δ/2n)
cov ) = Oδ(tcov+k(n, ε, δ/2n)/π∗) =

Oδ(tcov + n lnn/π∗ε
2).
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5 The k-cover Time of Irreducible Chains

For general irreducible chains, the connections with resistance network and Gaussian free field no longer
hold. However, we can still use the bounds of k-return time for irreducible chains to bound the k-cover time
up to logarithmic factors. We conjecture that the lower bound is tight, i.e., we have t(k)

cov = Θ(tcov + k/π∗)
for all irreducible chains, but we believe advanced tools will be needed to prove this conjecture.

5.1 Upper Bound for Irreducible Chains

The proof of the tight upper bound on k-cover time for reversible chains uses the connections between the
cover time and effective resistance/Gaussian free field, none of which have a nice counterpart for general
irreducible chains. However, one can still prove upper bounds on the k-cover time that’s O(lnn)-factor
looser, by bounding the k-hitting times (i.e. the first time when a particular state i0 is visited k times).
Similar idea is used to derive upper bounds on the blanket time in [WZ96].

Lemma 14 (Concentration of the k-hitting time). For random walk on irreducible chains, the k-hitting time
of state i ∈ V satisfies

P(τ
(k)
hit (i) ≥ t) ≤ e · exp(−t/e(thit + k/πi)),

for any t ≥ 0.

Proof. Note for irreducible chains, we still have tret(i) = 1/πi, and hence t(k)
hit (i) = thit(i) + (k − 1)/πi ≤

thit + (k − 1)/πi by the Markov property. Hence P(τ
(k)
hit (i) ≥ e(thit + (k − 1)/πi)) ≤ 1/e. By similar

argument used in the exponential decay lemma, we have P(τ
(k)
hit (i) ≥ em(thit + (k − 1)/πi)) ≤ 1/em, and

therefore

P(τ
(k)
hit (i) ≥ t) ≤ e · exp(−t/e(thit + (k − 1)/πi)) ≤ e · exp(−t/e(thit + k/πi)).

This proves the lemma.

This yields an upper bound on k-cover time for irreducible chains as follows.

Theorem 7 (k-cover time from k-hitting time). For random walk on irreducible chains, we have t(k)
cov =

Õ(tcov + k/π∗).

Proof. We can think of the k-cover time τ (k)
cov upper bounded by the maximum of k-hitting times of different

states. That is, we have τ (k)
cov ≤ maxi∈V τ

(k)
hit (i). Then by the concentration of k-hitting time, we have

P(τ
(k)
hit (i) ≥ t) ≤ e · exp(−t/e(thit + k/πi)). By a union bound, we have

P(max
i∈V

τ
(k)
hit (i) ≥ t) ≤

∑
i∈[n]

e · exp(−t/e(thit + k/πi)) ≤ en · exp(−t/e(thit + k/π∗)).

Now we can transform this high probability bound into expectation form as

E[τ
(k)
cov ] ≤

∫ e lnn(thit+k/π∗)

t=0
1 · dt+

∫ ∞
t=e lnn(thit+k/π∗)

en · exp(−t/e(thit + k/π∗)) · dt

=e lnn(thit + k/π∗) + e2(thit + k/π∗),

(10)

This gives us that t(k)
cov = O(tcov lnn+ k lnn/π∗) = Õ(tcov + k/π∗).
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5.2 Upper Bound for Ergodic Chains

In [WK19b], the family of ergodic chains with pseudo-spectral gap lower bounded by γps and minimum
stationary probability lower bounded by π∗ asMerg(γps, π∗) is considered.

We remark that this is a sub-family of irreducible chains that have finite-time mixing properties. It excludes
all periodic random walks, including simple random walk on a two-node single-edge graph. Thus, our
arguments via the k-cover time in fact broaden the family of chains that previous results can be applied to.
Specially, we use Paulin’s result [Pau15] to bound the k-cover time w.r.t. the pseudo-spectral gap γps. This
naturally recovers the results in [WK19b, WK20a].

For an irreducible Markov chain Xm
1 over [n], given a function f : [n] → R satisfying f ∈ L2(π),

i.e., Ei∼π f2(i) =
∑n

i=1 πif
2(i) < ∞, then it will have finite stationary expectation as Ef , Eπ f =

Ei∼π f(i) < ∞ and finite stationary variance as Vf , Varπ(f) = Eπ f2 − (Eπ f)2 < ∞. Then we have
the following concentration inequality over Markov chains due to [Pau15].

Lemma 15 (Bernstein inequality for Markov chains). For an irreducible Markov chain Xm
1 over [n] and

given f ∈ L2(π), if we have |f(i)− Eπ(f)| ≤ C,∀i ∈ [n], and let S =
∑m

i=1 f(Xi), then for any starting
distribution,

P
(∣∣S − E

π
(S)
∣∣ ≥ t) ≤√ 2

π∗
exp

(
−t2γps

−16(m+ 1/γps)Vf + 40tC

)
.

Similar inequality is true for reversible Markov chains, with γ∗ instead of γps in the right hand side and is
slightly tighter.

Lemma 16 (High probability bound on k-cover time of ergodic chain). For an ergodic Markov chain with

minimum stationary probability π∗ and pseudo-spectral gap γps , when m ≥ max{ 300
π∗γps

ln
(
n
δ

√
2
π∗

)
, 2k
π∗
},

we have P({τcov ≤ m}) ≥ 1− δ.

Proof. Denote the eventEi , {Ni(m) ∈ [0.5mπi, 1.5mπi]}, and eventE , ∪i∈[n]Ei. Then due to Paulin’s
result, we have

P(Ei) = P(|Ni(m)−mπi| ≥ 0.5mπi) ≤
√

2

π∗
exp

(
−

m2πiγps

64(m+ 1/γps) + 80m

)
Here we used f(j) = δji ,∀j ∈ [n], then |f(j) − Eπ(f)| ≤ 1, and Vf = πi(1 − πi) ≤ πi, S = Ni(m) =∑m

i=1 f(Xi). Then by a union bound, we have

P(E) ≤
∑
x∈[n]

P(Ex) ≤
∑
i∈[n]

√
2

π∗
exp

(
−

m2πiγps

64(m+ 1/γps) + 80m

)
≤n
√

2

π∗
exp

(
−

m2π∗γps

150(m+ 1/γps)

)
.

(11)

Thus if we denote αδ , 150
π∗

ln
(
n
δ

√
2
π∗

)
, then we have for m ≥ αδ

2γps
+ 1

2

√(
αδ
γps

)2
+ 4αδ

γ2ps
, P(E) ≤ δ. Note

αδ > 1, and use
√
x+ y ≤

√
x +
√
y, we have that m ≥ 2αδγps

suffices to make P(E) ≤ δ. Note we have

P(Ec) ≤ P ({∀i ∈ [n], Ni(m) ≥ 0.5mπx}) ≤ P({∀i ∈ [n], Ni(m) ≥ 0.5mπ∗}) ≤ P({τ (0.5mπ∗)
cov ≤ m}).
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Let m ≥ 2k
π∗

, then P({τ (k)
cov ≤ m}) ≥ P({τ (0.5mπ∗)

cov ≤ m}). Thus, for m ≥ max{ 2k
π∗
, 2αδγps

}, we have

P({τ (k)
cov ≤ m}) ≥ 1− δ.

This then gives the following bound on the expected k-cover time.

Theorem 8 (Upper bound on expected k-cover time for irreducible chain). For an ergodic Markov chain
with π∗ and pseudo-spectral gap γps, we have t(k)

cov ≤ max{ 4k
π∗
, 600
π∗γps

ln
(

150
√

2n√
π∗

)
}, and hence t(k)

cov = O( k
π∗

+
1

π∗γps
ln n

π∗
).

Proof. Since for m ≥ max{ 300
π∗γps

ln
(
n
δ

√
2
π∗

)
, 2k
π∗
} , we have P({τcov ≤ m}) ≥ 1 − δ. Thus let t =

300
π∗γps

ln
(
n
δ

√
2
π∗

)
, we have P(τ

(k)
cov ≤ max{t, 2k/π∗}) ≥ 1 − n

√
2
π∗

exp
(
− π∗γpst

300

)
. Thus, the expected

k-cover time

E(τ
(k)
cov ) =

∫ 2k
π∗

0
P(τ

(k)
cov ≥ t)dt+

∫ ∞
2k
π∗

P(τ
(k)
cov ≥ t)dt

≤2k

π∗
+

∫ ∞
2k
π∗

n

√
2

π∗
exp

(
−
π∗γpst

300

)
dt.

(12)

This finally gives t(k)
cov ≤ 2k

π∗
+300

√
2n

γpsπ
3/2
∗

exp
(
−γpsk

150

)
.When k ≥ k∗ , 150

γps
ln
(

150
√

2n√
π∗

)
, we have 150

√
2n√

π∗
exp

(
−

γpsk
150

)
≤ 1, and therefore, 300

√
2n

γpsπ
3/2
∗

exp
(
− γpsk

150

)
≤ 2

γpsπ∗
. Note k ≥ 1

γps
, thus 2k

π∗
≥ 300

√
2n

γpsπ
3/2
∗

exp
(
− γpsk

150

)
and hence t(k)

cov ≤ 4k
π∗

. But when k ≤ k∗, we have t(k)
cov ≤ t(k

∗)
cov ≤ 4k∗

π∗
. This proves the theorem.

Remark 1 (Concentration inequality for general irreducible chains). In [Mou20], the following concentra-
tion inequality is proved. Here f : [n] → (a, b) is any bounded function on the state space and q is the
initial distribution. For any irreducible Markov chain,

P
(∣∣S − E

q
(S)
∣∣ ≥ t) ≤√ 2

π∗
exp

(
−t2

2m(b− a)2t2hit

)
.

However, since the right hand side incurs a quadratic dependence on t2hit = Θ̃(t2cov), it would yield a much
worse bound on the k-cover time than that in Theorem 7.

5.3 Learning and Testing Irreducible (or Ergodic) Chains

Again, we will see how the k-cover time bound implies sample complexity bounds on learning/testing
Markov chains. We consider the family of irreducible chains with cover time upper bounded by tcov and
minimum stationary probability lower bounded by π∗, which we denote asMirr(tcov, π∗). We also consider
Merg(γps, π∗), the family of ergodic chains with pseudo-spectral gap lower bounded by γps and minimum
stationary probability

The following theorem on testing and learning Markov chains is a natural corollary of the theorems proved.

Theorem 9 (Sample complexity bounds for learning/testing irreducible chains). For a n-state irreducible
Markov chains fromMirr(tcov, π∗) (orMerg(γps, π∗)), we have the following sample complexity bounds.
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1. We can (ε, δ)-learn the chain using Õ(tcov + n
π∗ε2

) (or Õ( 1
π∗γps

+ n
π∗ε2

)) samples;

2. We can (ε, δ)-identity-test the chain using Õ(tcov +
√
n

π∗ε2
) (or Õ( 1

π∗γps
+
√
n

π∗ε2
)) samples;

3. We can (ε, δ)-closeness-test the chains using Õ(tcov + 1
π∗

(n
2/3

ε4/3
+
√
n
ε2

)) (or Õ( 1
π∗γps

+ 1
π∗

(n
2/3

ε4/3
+
√
n
ε2

)))
samples.

4. The other results are analogous to Theorem 6, within a logarithmic factor.

Proof. This is a direct application of Theorem 1, Theorem 7 and Lemma 2, Lemma 3, Lemma 4. Results
about Markov chains fromMierg(γps, π∗) uses Theorem 8 instead of Theorem 7.

6 Conclusion and Open Problems

In this paper, we considered the problem of testing and learning Markov chains from a single trajectory.
We show that the sample complexity of a number of learning and testing problems over Markov chains is
strongly related to the k-cover time of the unknown chain. We then proved that t(k)

cov = Θ(tcov + k/π∗) for
reversible Markov chains and t(k)

cov = Θ̃(tcov + k/π∗) for general irreducible Markov chains. These results
on k-cover time give sample complexity bounds for a broad family of learning and testing problems over
Markov chains, and apply to a broader family of chains than in the previous works.

We leave the tight characterization of k-cover time for irreducible chains as an open problem, but we con-
jecture the lower bound to be tight. It would also be nice if one can prove corresponding lower bounds on
sample complexity using the idea of k-cover times.

Moreover, it has been considered by Newman that the second set of coupon in the coupon collector’s problem
costs Θ(n ln lnn), even though the first set of coupon costs Θ(n lnn) in expectation. It’s dubbed the “double
dixie cup problem” in [New60]. We find it interesting to ask similar questions in the setting of Markov
chains: what’s the cost of a second cover in n-cycle, n-path or torus? By our theorem for k-cover time, for
k large enough, it seems that each marginal cover costs Θ(1/π∗), but it gives no clue about the cost of the
second cover.
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